亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper establishes the equivalence between Local Differential Privacy (LDP) and a global limit on learning any knowledge about an object. However, an output from an LDP query is not necessarily required to provide exact amount of knowledge equal to the upper bound of the learning limit. Since the amount of knowledge gain should be proportional to the incurred privacy loss, the traditional approach of using DP guarantee to measure privacy loss can occasionally overestimate the actual privacy loss. This is especially problematic in privacy accounting in LDP, where privacy loss is computed by summing the DP guarantees (basic composition). To address this issue, this paper introduces the concept of realized privacy loss, which measures the actual knowledge gained by the analyst after a query, as a more accurate measure of privacy loss. The realized privacy loss is then integrated into the privacy accounting of fully adaptive composition, where an adversary adaptively selects queries based on previous results. The Bayesian Privacy Filter is implemented to ensure that the realized privacy loss of the composed queries eventually reaches the DP guarantee, allowing the full utilization of the privacy budget assigned to a queried object. Furthermore, this paper introduces the Bayesian Privacy Odometer to measure realized privacy loss in fully adaptive composition. Experimental evaluations are conducted to assess the efficiency of the Bayesian Privacy Filter, demonstrating that the corresponding composition can accept arbitrarily more queries than the basic composition when the composed queries have sufficiently small DP guarantees. Conversely, this paper concludes, through experiments, that when estimating the histogram of a group of objects with the same privacy budget, an analyst should prefer using a single randomized response over a composition managed by the Bayesian Privacy Filter.

相關內容

Bayesian inference for neural networks, or Bayesian deep learning, has the potential to provide well-calibrated predictions with quantified uncertainty and robustness. However, the main hurdle for Bayesian deep learning is its computational complexity due to the high dimensionality of the parameter space. In this work, we propose a novel scheme that addresses this limitation by constructing a low-dimensional subspace of the neural network parameters-referred to as an active subspace-by identifying the parameter directions that have the most significant influence on the output of the neural network. We demonstrate that the significantly reduced active subspace enables effective and scalable Bayesian inference via either Monte Carlo (MC) sampling methods, otherwise computationally intractable, or variational inference. Empirically, our approach provides reliable predictions with robust uncertainty estimates for various regression tasks.

The issue of shortcut learning is widely known in NLP and has been an important research focus in recent years. Unintended correlations in the data enable models to easily solve tasks that were meant to exhibit advanced language understanding and reasoning capabilities. In this survey paper, we focus on the field of machine reading comprehension (MRC), an important task for showcasing high-level language understanding that also suffers from a range of shortcuts. We summarize the available techniques for measuring and mitigating shortcuts and conclude with suggestions for further progress in shortcut research. Importantly, we highlight two concerns for shortcut mitigation in MRC: (1) the lack of public challenge sets, a necessary component for effective and reusable evaluation, and (2) the lack of certain mitigation techniques that are prominent in other areas.

This paper investigates the suitability of using Generative Adversarial Networks (GANs) to generate stable structures for the physics-based puzzle game Angry Birds. While previous applications of GANs for level generation have been mostly limited to tile-based representations, this paper explores their suitability for creating stable structures made from multiple smaller blocks. This includes a detailed encoding/decoding process for converting between Angry Birds level descriptions and a suitable grid-based representation, as well as utilizing state-of-the-art GAN architectures and training methods to produce new structure designs. Our results show that GANs can be successfully applied to generate a varied range of complex and stable Angry Birds structures.

Federated Learning (FL) presents an innovative approach to privacy-preserving distributed machine learning and enables efficient crowd intelligence on a large scale. However, a significant challenge arises when coordinating FL with crowd intelligence which diverse client groups possess disparate objectives due to data heterogeneity or distinct tasks. To address this challenge, we propose the Federated cINN Clustering Algorithm (FCCA) to robustly cluster clients into different groups, avoiding mutual interference between clients with data heterogeneity, and thereby enhancing the performance of the global model. Specifically, FCCA utilizes a global encoder to transform each client's private data into multivariate Gaussian distributions. It then employs a generative model to learn encoded latent features through maximum likelihood estimation, which eases optimization and avoids mode collapse. Finally, the central server collects converged local models to approximate similarities between clients and thus partition them into distinct clusters. Extensive experimental results demonstrate FCCA's superiority over other state-of-the-art clustered federated learning algorithms, evaluated on various models and datasets. These results suggest that our approach has substantial potential to enhance the efficiency and accuracy of real-world federated learning tasks.

In this paper, error estimates of classification Random Forests are quantitatively assessed. Based on the initial theoretical framework built by Bates et al. (2023), the true error rate and expected error rate are theoretically and empirically investigated in the context of a variety of error estimation methods common to Random Forests. We show that in the classification case, Random Forests' estimates of prediction error is closer on average to the true error rate instead of the average prediction error. This is opposite the findings of Bates et al. (2023) which were given for logistic regression. We further show that this result holds across different error estimation strategies such as cross-validation, bagging, and data splitting.

In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.

Recent contrastive representation learning methods rely on estimating mutual information (MI) between multiple views of an underlying context. E.g., we can derive multiple views of a given image by applying data augmentation, or we can split a sequence into views comprising the past and future of some step in the sequence. Contrastive lower bounds on MI are easy to optimize, but have a strong underestimation bias when estimating large amounts of MI. We propose decomposing the full MI estimation problem into a sum of smaller estimation problems by splitting one of the views into progressively more informed subviews and by applying the chain rule on MI between the decomposed views. This expression contains a sum of unconditional and conditional MI terms, each measuring modest chunks of the total MI, which facilitates approximation via contrastive bounds. To maximize the sum, we formulate a contrastive lower bound on the conditional MI which can be approximated efficiently. We refer to our general approach as Decomposed Estimation of Mutual Information (DEMI). We show that DEMI can capture a larger amount of MI than standard non-decomposed contrastive bounds in a synthetic setting, and learns better representations in a vision domain and for dialogue generation.

This paper surveys the field of transfer learning in the problem setting of Reinforcement Learning (RL). RL has been the key solution to sequential decision-making problems. Along with the fast advance of RL in various domains. including robotics and game-playing, transfer learning arises as an important technique to assist RL by leveraging and transferring external expertise to boost the learning process. In this survey, we review the central issues of transfer learning in the RL domain, providing a systematic categorization of its state-of-the-art techniques. We analyze their goals, methodologies, applications, and the RL frameworks under which these transfer learning techniques would be approachable. We discuss the relationship between transfer learning and other relevant topics from an RL perspective and also explore the potential challenges as well as future development directions for transfer learning in RL.

In this paper, we proposed to apply meta learning approach for low-resource automatic speech recognition (ASR). We formulated ASR for different languages as different tasks, and meta-learned the initialization parameters from many pretraining languages to achieve fast adaptation on unseen target language, via recently proposed model-agnostic meta learning algorithm (MAML). We evaluated the proposed approach using six languages as pretraining tasks and four languages as target tasks. Preliminary results showed that the proposed method, MetaASR, significantly outperforms the state-of-the-art multitask pretraining approach on all target languages with different combinations of pretraining languages. In addition, since MAML's model-agnostic property, this paper also opens new research direction of applying meta learning to more speech-related applications.

This paper surveys the machine learning literature and presents machine learning as optimization models. Such models can benefit from the advancement of numerical optimization techniques which have already played a distinctive role in several machine learning settings. Particularly, mathematical optimization models are presented for commonly used machine learning approaches for regression, classification, clustering, and deep neural networks as well new emerging applications in machine teaching and empirical model learning. The strengths and the shortcomings of these models are discussed and potential research directions are highlighted.

北京阿比特科技有限公司