Within the next decade the Laser Interferometer Space Antenna (LISA) is due to be launched, providing the opportunity to extract physics from stellar objects and systems, such as \textit{Extreme Mass Ratio Inspirals}, (EMRIs) otherwise undetectable to ground based interferometers and Pulsar Timing Arrays (PTA). Unlike previous sources detected by the currently available observational methods, these sources can \textit{only} be simulated using an accurate computation of the gravitational self-force. Whereas the field has seen outstanding progress in the frequency domain, metric reconstruction and self-force calculations are still an open challenge in the time domain. Such computations would not only further corroborate frequency domain calculations and models, but also allow for full self-consistent evolution of the orbit under the effect of the self-force. Given we have \textit{a priori} information about the local structure of the discontinuity at the particle, we will show how to construct discontinuous spatial and temporal discretisations by operating on discontinuous Lagrange and Hermite interpolation formulae and hence recover higher order accuracy. In this work we demonstrate how this technique in conjunction with well-suited gauge choice (hyperboloidal slicing) and numerical (discontinuous collocation with time symmetric) methods can provide a relatively simple method of lines numerical algorithm to the problem. This is the first of a series of papers studying the behaviour of a point-particle prescribing circular geodesic motion in Schwarzschild in the \textit{time domain}. In this work we describe the numerical machinery necessary for these computations and show not only our work is capable of highly accurate flux radiation measurements but it also shows suitability for evaluation of the necessary field and it's derivatives at the particle limit.
Error bounds are derived for sampling and estimation using a discretization of an intrinsically defined Langevin diffusion with invariant measure $d\mu_\phi \propto e^{-\phi} \mathrm{dvol}_g $ on a compact Riemannian manifold. Two estimators of linear functionals of $\mu_\phi $ based on the discretized Markov process are considered: a time-averaging estimator based on a single trajectory and an ensemble-averaging estimator based on multiple independent trajectories. Imposing no restrictions beyond a nominal level of smoothness on $\phi$, first-order error bounds, in discretization step size, on the bias and variances of both estimators are derived. The order of error matches the optimal rate in Euclidean and flat spaces, and leads to a first-order bound on distance between the invariant measure $\mu_\phi$ and a stationary measure of the discretized Markov process. Generality of the proof techniques, which exploit links between two partial differential equations and the semigroup of operators corresponding to the Langevin diffusion, renders them amenable for the study of a more general class of sampling algorithms related to the Langevin diffusion. Conditions for extending analysis to the case of non-compact manifolds are discussed. Numerical illustrations with distributions, log-concave and otherwise, on the manifolds of positive and negative curvature elucidate on the derived bounds and demonstrate practical utility of the sampling algorithm.
Microring resonators (MRRs) are promising devices for time-delay photonic reservoir computing, but the impact of the different physical effects taking place in the MRRs on the reservoir computing performance is yet to be fully understood. We numerically analyze the impact of linear losses as well as thermo-optic and free-carrier effects relaxation times on the prediction error of the time-series task NARMA-10. We demonstrate the existence of three regions, defined by the input power and the frequency detuning between the optical source and the microring resonance, that reveal the cavity transition from linear to nonlinear regimes. One of these regions offers very low error in time-series prediction under relatively low input power and number of nodes while the other regions either lack nonlinearity or become unstable. This study provides insight into the design of the MRR and the optimization of its physical properties for improving the prediction performance of time-delay reservoir computing.
It was recently shown [7, 9] that "properly built" linear and polyhedral estimates nearly attain minimax accuracy bounds in the problem of recovery of unknown signal from noisy observations of linear images of the signal when the signal set is an ellitope. However, design of nearly optimal estimates relies upon solving semidefinite optimization problems with matrix variables, what puts the synthesis of such estimates beyond the rich of the standard Interior Point algorithms of semidefinite optimization even for moderate size recovery problems. Our goal is to develop First Order Optimization algorithms for the computationally efficient design of linear and polyhedral estimates. In this paper we (a) explain how to eliminate matrix variables, thus reducing dramatically the design dimension when passing from Interior Point to First Order optimization algorithms and (2) develop and analyse a dedicated algorithm of the latter type -- Composite Truncated Level method.
EODECA (Engineered Ordinary Differential Equations as Classification Algorithm) is a novel approach at the intersection of machine learning and dynamical systems theory, presenting a unique framework for classification tasks [1]. This method stands out with its dynamical system structure, utilizing ordinary differential equations (ODEs) to efficiently handle complex classification challenges. The paper delves into EODECA's dynamical properties, emphasizing its resilience against random perturbations and robust performance across various classification scenarios. Notably, EODECA's design incorporates the ability to embed stable attractors in the phase space, enhancing reliability and allowing for reversible dynamics. In this paper, we carry out a comprehensive analysis by expanding on the work [1], and employing a Euler discretization scheme. In particular, we evaluate EODECA's performance across five distinct classification problems, examining its adaptability and efficiency. Significantly, we demonstrate EODECA's effectiveness on the MNIST and Fashion MNIST datasets, achieving impressive accuracies of $98.06\%$ and $88.21\%$, respectively. These results are comparable to those of a multi-layer perceptron (MLP), underscoring EODECA's potential in complex data processing tasks. We further explore the model's learning journey, assessing its evolution in both pre and post training environments and highlighting its ability to navigate towards stable attractors. The study also investigates the invertibility of EODECA, shedding light on its decision-making processes and internal workings. This paper presents a significant step towards a more transparent and robust machine learning paradigm, bridging the gap between machine learning algorithms and dynamical systems methodologies.
Generative AIs, especially Large Language Models (LLMs) such as ChatGPT or Llama, have advanced significantly, positioning them as valuable tools for digital forensics. While initial studies have explored the potential of ChatGPT in the context of investigations, the question of to what extent LLMs can assist the forensic report writing process remains unresolved. To answer the question, this article first examines forensic reports with the goal of generalization (e.g., finding the `average structure' of a report). We then evaluate the strengths and limitations of LLMs for generating the different parts of the forensic report using a case study. This work thus provides valuable insights into the automation of report writing, a critical facet of digital forensics investigations. We conclude that combined with thorough proofreading and corrections, LLMs may assist practitioners during the report writing process but at this point cannot replace them.
A high-order, degree-adaptive hybridizable discontinuous Galerkin (HDG) method is presented for two-fluid incompressible Stokes flows, with boundaries and interfaces described using NURBS. The NURBS curves are embedded in a fixed Cartesian grid, yielding an unfitted HDG scheme capable of treating the exact geometry of the boundaries/interfaces, circumventing the need for fitted, high-order, curved meshes. The framework of the NURBS-enhanced finite element method (NEFEM) is employed for accurate quadrature along immersed NURBS and in elements cut by NURBS curves. A Nitsche's formulation is used to enforce Dirichlet conditions on embedded surfaces, yielding unknowns only on the mesh skeleton as in standard HDG, without introducing any additional degree of freedom on non-matching boundaries/interfaces. The resulting unfitted HDG-NEFEM method combines non-conforming meshes, exact NURBS geometry and high-order approximations to provide high-fidelity results on coarse meshes, independent of the geometric features of the domain. Numerical examples illustrate the optimal accuracy and robustness of the method, even in the presence of badly cut cells or faces, and its suitability to simulate microfluidic systems from CAD geometries.
We consider the problem of finding the smallest or largest entry of a tensor of order N that is specified via its rank decomposition. Stated in a different way, we are given N sets of R-dimensional vectors and we wish to select one vector from each set such that the sum of the Hadamard product of the selected vectors is minimized or maximized. We show that this fundamental tensor problem is NP-hard for any tensor rank higher than one, and polynomial-time solvable in the rank-one case. We also propose a continuous relaxation and prove that it is tight for any rank. For low-enough ranks, the proposed continuous reformulation is amenable to low-complexity gradient-based optimization, and we propose a suite of gradient-based optimization algorithms drawing from projected gradient descent, Frank-Wolfe, or explicit parametrization of the relaxed constraints. We also show that our core results remain valid no matter what kind of polyadic tensor model is used to represent the tensor of interest, including Tucker, HOSVD/MLSVD, tensor train, or tensor ring. Next, we consider the class of problems that can be posed as special instances of the problem of interest. We show that this class includes the partition problem (and thus all NP-complete problems via polynomial-time transformation), integer least squares, integer linear programming, integer quadratic programming, sign retrieval (a special kind of mixed integer programming / restricted version of phase retrieval), and maximum likelihood decoding of parity check codes. We demonstrate promising experimental results on a number of hard problems, including state-of-art performance in decoding low density parity check codes and general parity check codes.
May's Theorem [K. O. May, Econometrica 20 (1952) 680-684] characterizes majority voting on two alternatives as the unique preferential voting method satisfying several simple axioms. Here we show that by adding some desirable axioms to May's axioms, we can uniquely determine how to vote on three alternatives. In particular, we add two axioms stating that the voting method should mitigate spoiler effects and avoid the so-called strong no show paradox. We prove a theorem stating that any preferential voting method satisfying our enlarged set of axioms, which includes some weak homogeneity and preservation axioms, agrees with Minimax voting in all three-alternative elections, except perhaps in some improbable knife-edged elections in which ties may arise and be broken in different ways.
The goal of explainable Artificial Intelligence (XAI) is to generate human-interpretable explanations, but there are no computationally precise theories of how humans interpret AI generated explanations. The lack of theory means that validation of XAI must be done empirically, on a case-by-case basis, which prevents systematic theory-building in XAI. We propose a psychological theory of how humans draw conclusions from saliency maps, the most common form of XAI explanation, which for the first time allows for precise prediction of explainee inference conditioned on explanation. Our theory posits that absent explanation humans expect the AI to make similar decisions to themselves, and that they interpret an explanation by comparison to the explanations they themselves would give. Comparison is formalized via Shepard's universal law of generalization in a similarity space, a classic theory from cognitive science. A pre-registered user study on AI image classifications with saliency map explanations demonstrate that our theory quantitatively matches participants' predictions of the AI.
Training a deep architecture using a ranking loss has become standard for the person re-identification task. Increasingly, these deep architectures include additional components that leverage part detections, attribute predictions, pose estimators and other auxiliary information, in order to more effectively localize and align discriminative image regions. In this paper we adopt a different approach and carefully design each component of a simple deep architecture and, critically, the strategy for training it effectively for person re-identification. We extensively evaluate each design choice, leading to a list of good practices for person re-identification. By following these practices, our approach outperforms the state of the art, including more complex methods with auxiliary components, by large margins on four benchmark datasets. We also provide a qualitative analysis of our trained representation which indicates that, while compact, it is able to capture information from localized and discriminative regions, in a manner akin to an implicit attention mechanism.