亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Integrating artificial intelligence (AI) and federated learning (FL) in smart transportation has raised critical issues regarding their responsible use. Ensuring responsible AI is paramount for the stability and sustainability of intelligent transportation systems. Despite its importance, research on the responsible application of AI and FL in this domain remains nascent, with a paucity of in-depth investigations into their confluence. Our study analyzes the roles of FL in smart transportation, as well as the promoting effect of responsible AI on distributed smart transportation. Lastly, we discuss the challenges of developing and implementing responsible FL in smart transportation and propose potential solutions. By integrating responsible AI and federated learning, intelligent transportation systems are expected to achieve a higher degree of intelligence, personalization, safety, and transparency.

相關內容

智慧交通的前身是智能交通(Intelligent Transport System,簡稱ITS),ITS是20世紀90年代初美國提出的理念。到了2009年,IBM提出了智慧交通的理念。是將先進的信息技術、通訊技術、傳感技術、控制技術及計算機技術等有效率地集成運用于整個交通運輸管理體系,而創建起的一種在大范圍內及全方位發揮作用的,實時、準確及高效率的綜合的運輸和管理系統。美國、日本、歐洲率先展開相應的研究并成為ITS發展的三強,此外加拿大、中國、韓國、新加坡、澳大利亞等國家的研究也具有相當規模。智能交通系統由多個系統構成,其中包括出行者信息系統(ATIS)、先進交通管理系統(ATMS)、先進公共交通系統(APTS)、先進車輛控制系統(AVCS)、電子不停車收費系統(ETC)、商用車輛運營系統(CVOS)等

Retrieval-based augmentations (RA) incorporating knowledge from an external database into language models have greatly succeeded in various knowledge-intensive (KI) tasks. However, integrating retrievals in non-knowledge-intensive (NKI) tasks is still challenging. Existing works focus on concatenating retrievals with inputs to improve model performance. Unfortunately, the use of retrieval concatenation-based augmentations causes an increase in the input length, substantially raising the computational demands of attention mechanisms. This paper proposes a new paradigm of RA named \textbf{ReFusion}, a computation-efficient Retrieval representation Fusion with bi-level optimization. Unlike previous works, ReFusion directly fuses the retrieval representations into the hidden states of models. Specifically, ReFusion leverages an adaptive retrieval integrator to seek the optimal combination of the proposed ranking schemes across different model layers. Experimental results demonstrate that the proposed ReFusion can achieve superior and robust performance in various NKI tasks.

Recent knowledge editing methods have primarily focused on modifying structured knowledge in large language models, heavily relying on the assumption that structured knowledge is stored as key-value pairs locally in MLP layers or specific neurons. However, this task setting overlooks the fact that a significant portion of real-world knowledge is stored in an unstructured format, characterized by long-form content, noise, and a complex yet comprehensive nature. The "knowledge locating" and "term-driven optimization" techniques conducted from the assumption used in previous methods (e.g., MEMIT) are ill-suited for unstructured knowledge. To address these challenges, we propose a novel unstructured knowledge editing method, namely UnKE, which extends previous assumptions in the layer dimension and token dimension. Firstly, in the layer dimension, we discard the "knowledge locating" step and treat first few layers as the key, which expand knowledge storage through layers to break the "knowledge stored locally" assumption. Next, we replace "term-driven optimization" with "cause-driven optimization" across all inputted tokens in the token dimension, directly optimizing the last layer of the key generator to perform editing to generate the required key vectors. By utilizing key-value pairs at the layer level, UnKE effectively represents and edits complex and comprehensive unstructured knowledge, leveraging the potential of both the MLP and attention layers. Results on newly proposed unstructure knowledge editing dataset (UnKEBench) and traditional structured datasets demonstrate that UnKE achieves remarkable performance, surpassing strong baselines.

Large language models (LLMs) have been shown to face hallucination issues due to the data they trained on often containing human bias; whether this is reflected in the decision-making process of LLM agents remains under-explored. As LLM Agents are increasingly employed in intricate social environments, a pressing and natural question emerges: Can LLM Agents leverage hallucinations to mirror human cognitive biases, thus exhibiting irrational social intelligence? In this paper, we probe the irrational behavior among contemporary LLM agents by melding practical social science experiments with theoretical insights. Specifically, We propose CogMir, an open-ended Multi-LLM Agents framework that utilizes hallucination properties to assess and enhance LLM Agents' social intelligence through cognitive biases. Experimental results on CogMir subsets show that LLM Agents and humans exhibit high consistency in irrational and prosocial decision-making under uncertain conditions, underscoring the prosociality of LLM Agents as social entities, and highlighting the significance of hallucination properties. Additionally, CogMir framework demonstrates its potential as a valuable platform for encouraging more research into the social intelligence of LLM Agents.

The continuous advancement of large language models (LLMs) has brought increasing attention to the critical issue of developing fair and reliable methods for evaluating their performance. Particularly, the emergence of subjective or non-subjective cheating phenomena, such as test set leakage and prompt format overfitting, poses significant challenges to the reliable evaluation of LLMs. Since evaluation frameworks often utilize Regular Expression (RegEx) for answer extraction, some models may adjust their responses to comply with specific formats that are easily extractable by RegEx. Nevertheless, the key answer extraction module based on RegEx frequently suffers from extraction errors. This paper conducts a comprehensive analysis of the entire LLM evaluation chain, demonstrating that optimizing the key answer extraction module can improve extraction accuracy, reduce LLMs' reliance on specific answer formats, and enhance the reliability of LLM evaluation. To address these issues, we propose xFinder, a model specifically designed for key answer extraction. As part of this process, we create a specialized dataset, the Key Answer Finder (KAF) dataset, to ensure effective model training and evaluation. Through generalization testing and evaluation in real-world scenarios, the results demonstrate that the smallest xFinder model with only 500 million parameters achieves an average answer extraction accuracy of 93.42%. In contrast, RegEx accuracy in the best evaluation framework is 74.38%. xFinder exhibits stronger robustness and higher accuracy compared to existing evaluation frameworks.

In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.

The incredible development of federated learning (FL) has benefited various tasks in the domains of computer vision and natural language processing, and the existing frameworks such as TFF and FATE has made the deployment easy in real-world applications. However, federated graph learning (FGL), even though graph data are prevalent, has not been well supported due to its unique characteristics and requirements. The lack of FGL-related framework increases the efforts for accomplishing reproducible research and deploying in real-world applications. Motivated by such strong demand, in this paper, we first discuss the challenges in creating an easy-to-use FGL package and accordingly present our implemented package FederatedScope-GNN (FS-G), which provides (1) a unified view for modularizing and expressing FGL algorithms; (2) comprehensive DataZoo and ModelZoo for out-of-the-box FGL capability; (3) an efficient model auto-tuning component; and (4) off-the-shelf privacy attack and defense abilities. We validate the effectiveness of FS-G by conducting extensive experiments, which simultaneously gains many valuable insights about FGL for the community. Moreover, we employ FS-G to serve the FGL application in real-world E-commerce scenarios, where the attained improvements indicate great potential business benefits. We publicly release FS-G, as submodules of FederatedScope, at //github.com/alibaba/FederatedScope to promote FGL's research and enable broad applications that would otherwise be infeasible due to the lack of a dedicated package.

Following unprecedented success on the natural language tasks, Transformers have been successfully applied to several computer vision problems, achieving state-of-the-art results and prompting researchers to reconsider the supremacy of convolutional neural networks (CNNs) as {de facto} operators. Capitalizing on these advances in computer vision, the medical imaging field has also witnessed growing interest for Transformers that can capture global context compared to CNNs with local receptive fields. Inspired from this transition, in this survey, we attempt to provide a comprehensive review of the applications of Transformers in medical imaging covering various aspects, ranging from recently proposed architectural designs to unsolved issues. Specifically, we survey the use of Transformers in medical image segmentation, detection, classification, reconstruction, synthesis, registration, clinical report generation, and other tasks. In particular, for each of these applications, we develop taxonomy, identify application-specific challenges as well as provide insights to solve them, and highlight recent trends. Further, we provide a critical discussion of the field's current state as a whole, including the identification of key challenges, open problems, and outlining promising future directions. We hope this survey will ignite further interest in the community and provide researchers with an up-to-date reference regarding applications of Transformer models in medical imaging. Finally, to cope with the rapid development in this field, we intend to regularly update the relevant latest papers and their open-source implementations at \url{//github.com/fahadshamshad/awesome-transformers-in-medical-imaging}.

The problem of answering questions using knowledge from pre-trained language models (LMs) and knowledge graphs (KGs) presents two challenges: given a QA context (question and answer choice), methods need to (i) identify relevant knowledge from large KGs, and (ii) perform joint reasoning over the QA context and KG. In this work, we propose a new model, QA-GNN, which addresses the above challenges through two key innovations: (i) relevance scoring, where we use LMs to estimate the importance of KG nodes relative to the given QA context, and (ii) joint reasoning, where we connect the QA context and KG to form a joint graph, and mutually update their representations through graph neural networks. We evaluate QA-GNN on the CommonsenseQA and OpenBookQA datasets, and show its improvement over existing LM and LM+KG models, as well as its capability to perform interpretable and structured reasoning, e.g., correctly handling negation in questions.

The notion of uncertainty is of major importance in machine learning and constitutes a key element of machine learning methodology. In line with the statistical tradition, uncertainty has long been perceived as almost synonymous with standard probability and probabilistic predictions. Yet, due to the steadily increasing relevance of machine learning for practical applications and related issues such as safety requirements, new problems and challenges have recently been identified by machine learning scholars, and these problems may call for new methodological developments. In particular, this includes the importance of distinguishing between (at least) two different types of uncertainty, often refereed to as aleatoric and epistemic. In this paper, we provide an introduction to the topic of uncertainty in machine learning as well as an overview of hitherto attempts at handling uncertainty in general and formalizing this distinction in particular.

This paper surveys the machine learning literature and presents machine learning as optimization models. Such models can benefit from the advancement of numerical optimization techniques which have already played a distinctive role in several machine learning settings. Particularly, mathematical optimization models are presented for commonly used machine learning approaches for regression, classification, clustering, and deep neural networks as well new emerging applications in machine teaching and empirical model learning. The strengths and the shortcomings of these models are discussed and potential research directions are highlighted.

北京阿比特科技有限公司