亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Over the years of challenges on detecting the crash consistency of non-volatile persistent memory (PM) bugs and developing new tools to identify those bugs are quite stretching due to its inconsistent behavior on the file or storage systems. In this paper, we evaluated an open-sourced automatic bug detector tool (i.e. AGAMOTTO) to test NVM level hashing PM application to identify performance and correctness PM bugs in the persistent (main) memory. Furthermore, our faithful validation tool able to discovered 65 new NVM level hashing bugs on PMDK library and it outperformed the number of bugs (i.e. 40 bugs) that WITCHER framework was able to identified. Finally, we will propose a Deep-Q Learning search heuristic algorithm over the PM-Aware search algorithm in the state selection process to improve the searching strategy efficiently.

相關內容

Neural implicit modeling permits to achieve impressive 3D reconstruction results on small objects, while it exhibits significant limitations in large indoor scenes. In this work, we propose a novel neural implicit modeling method that leverages multiple regularization strategies to achieve better reconstructions of large indoor environments, while relying only on images. A sparse but accurate depth prior is used to anchor the scene to the initial model. A dense but less accurate depth prior is also introduced, flexible enough to still let the model diverge from it to improve the estimated geometry. Then, a novel self-supervised strategy to regularize the estimated surface normals is presented. Finally, a learnable exposure compensation scheme permits to cope with challenging lighting conditions. Experimental results show that our approach produces state-of-the-art 3D reconstructions in challenging indoor scenarios.

Magnetic resonance imaging (MRI) always suffered from the problem of long acquisition time. MRI reconstruction is one solution to reduce scan time by skipping certain phase-encoding lines and then restoring high-quality images from undersampled measurements. Recently, implicit neural representation (INR) has emerged as a new deep learning method that represents an object as a continuous function of spatial coordinates, and this function is normally parameterized by a multilayer perceptron (MLP). In this paper, we propose a novel MRI reconstruction method based on INR, which represents the fully-sampled images as the function of pixel coordinates and prior feature vectors of undersampled images for overcoming the generalization problem of INR. Specifically, we introduce a scale-embedded encoder to produce scale-independent pixel-specific features from MR images with different undersampled scales and then concatenate with coordinates vectors to recover fully-sampled MR images via an MLP, thus achieving arbitrary scale reconstruction. The performance of the proposed method was assessed by experimenting on publicly available MRI datasets and compared with other reconstruction methods. Our quantitative evaluation demonstrates the superiority of the proposed method over alternative reconstruction methods.

Game engines support video game development by providing functionalities such as graphics rendering or input/output device management. However, their architectures are often overlooked, which hinders their integration and extension. In this paper, we use an approach for architecture recovery to create architectural models for 10 open-source game engines. We use these models to answer the following questions: Which subsystems more often couple with one another? Do game engines share subsystem coupling patterns? We observe that the Low-Level Renderer, Platform Independence Layer and Resource Manager are frequently coupled to the game engine Core. By identifying the most frequent coupling patterns, we describe an emergent game engine architecture and discuss how it can be used by practitioners to improve system understanding and maintainability.

Multivariate time series (MTS) data collected from multiple sensors provide the potential for accurate abnormal activity detection in smart healthcare scenarios. However, anomalies exhibit diverse patterns and become unnoticeable in MTS data. Consequently, achieving accurate anomaly detection is challenging since we have to capture both temporal dependencies of time series and inter-relationships among variables. To address this problem, we propose a Residual-based Anomaly Detection approach, Rs-AD, for effective representation learning and abnormal activity detection. We evaluate our scheme on a real-world gait dataset and the experimental results demonstrate an F1 score of 0.839.

Precipitation nowcasting (up to a few hours) remains a challenge due to the highly complex local interactions that need to be captured accurately. Convolutional Neural Networks rely on convolutional kernels convolving with grid data and the extracted features are trapped by limited receptive field, typically expressed in excessively smooth output compared to ground truth. Thus they lack the capacity to model complex spatial relationships among the grids. Geometric deep learning aims to generalize neural network models to non-Euclidean domains. Such models are more flexible in defining nodes and edges and can effectively capture dynamic spatial relationship among geographical grids. Motivated by this, we explore a geometric deep learning-based temporal Graph Convolutional Network (GCN) for precipitation nowcasting. The adjacency matrix that simulates the interactions among grid cells is learned automatically by minimizing the L1 loss between prediction and ground truth pixel value during the training procedure. Then, the spatial relationship is refined by GCN layers while the temporal information is extracted by 1D convolution with various kernel lengths. The neighboring information is fed as auxiliary input layers to improve the final result. We test the model on sequences of radar reflectivity maps over the Trento/Italy area. The results show that GCNs improves the effectiveness of modeling the local details of the cloud profile as well as the prediction accuracy by achieving decreased error measures.

Existing neural relevance models do not give enough consideration for query and item context information which diversifies the search results to adapt for personal preference. To bridge this gap, this paper presents a neural learning framework to personalize document ranking results by leveraging the signals to capture how the document fits into users' context. In particular, it models the relationships between document content and user query context using both lexical representations and semantic embeddings such that the user's intent can be better understood by data enrichment of personalized query context information. Extensive experiments performed on the search dataset, demonstrate the effectiveness of the proposed method.

Volumetric video offers a highly immersive viewing experience, but poses challenges in ensuring quality of experience (QoE) due to its high bandwidth requirements. In this paper, we explore the effect of viewing distance introduced by six degrees of freedom (6DoF) spatial navigation on user's perceived quality. By considering human visual resolution limitations, we propose a visual acuity model that describes the relationship between the virtual viewing distance and the tolerable boundary point cloud density. The proposed model satisfies spatial visual requirements during 6DoF exploration. Additionally, it dynamically adjusts quality levels to balance perceptual quality and bandwidth consumption. Furthermore, we present a QoE model to represent user's perceived quality at different viewing distances precisely. Extensive experimental results demonstrate that, the proposed scheme can effectively improve the overall average QoE by up to 26% over real networks and user traces, compared to existing baselines.

Obtaining versions of deep neural networks that are both highly-accurate and highly-sparse is one of the main challenges in the area of model compression, and several high-performance pruning techniques have been investigated by the community. Yet, much less is known about the interaction between sparsity and the standard stochastic optimization techniques used for training sparse networks, and most existing work uses standard dense schedules and hyperparameters for training sparse networks. In this work, we examine the impact of high sparsity on model training using the standard computer vision and natural language processing sparsity benchmarks. We begin by showing that using standard dense training recipes for sparse training is suboptimal, and results in under-training. We provide new approaches for mitigating this issue for both sparse pre-training of vision models (e.g. ResNet50/ImageNet) and sparse fine-tuning of language models (e.g. BERT/GLUE), achieving state-of-the-art results in both settings in the high-sparsity regime, and providing detailed analyses for the difficulty of sparse training in both scenarios. Our work sets a new threshold in terms of the accuracies that can be achieved under high sparsity, and should inspire further research into improving sparse model training, to reach higher accuracies under high sparsity, but also to do so efficiently.

This paper is an attempt to explain all the matrix calculus you need in order to understand the training of deep neural networks. We assume no math knowledge beyond what you learned in calculus 1, and provide links to help you refresh the necessary math where needed. Note that you do not need to understand this material before you start learning to train and use deep learning in practice; rather, this material is for those who are already familiar with the basics of neural networks, and wish to deepen their understanding of the underlying math. Don't worry if you get stuck at some point along the way---just go back and reread the previous section, and try writing down and working through some examples. And if you're still stuck, we're happy to answer your questions in the Theory category at forums.fast.ai. Note: There is a reference section at the end of the paper summarizing all the key matrix calculus rules and terminology discussed here. See related articles at //explained.ai

Recent advance in fluorescence microscopy enables acquisition of 3D image volumes with better quality and deeper penetration into tissue. Segmentation is a required step to characterize and analyze biological structures in the images. 3D segmentation using deep learning has achieved promising results in microscopy images. One issue is that deep learning techniques require a large set of groundtruth data which is impractical to annotate manually for microscopy volumes. This paper describes a 3D nuclei segmentation method using 3D convolutional neural networks. A set of synthetic volumes and the corresponding groundtruth volumes are generated automatically using a generative adversarial network. Segmentation results demonstrate that our proposed method is capable of segmenting nuclei successfully in 3D for various data sets.

北京阿比特科技有限公司