亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We consider the problem of estimating (diagonally dominant) M-matrices as precision matrices in Gaussian graphical models. These models exhibit intriguing properties, such as the existence of the maximum likelihood estimator with merely two observations for M-matrices \citep{lauritzen2019maximum,slawski2015estimation} and even one observation for diagonally dominant M-matrices \citep{truell2021maximum}. We propose an adaptive multiple-stage estimation method that refines the estimate by solving a weighted $\ell_1$-regularized problem at each stage. Furthermore, we develop a unified framework based on the gradient projection method to solve the regularized problem, incorporating distinct projections to handle the constraints of M-matrices and diagonally dominant M-matrices. A theoretical analysis of the estimation error is provided. Our method outperforms state-of-the-art methods in precision matrix estimation and graph edge identification, as evidenced by synthetic and financial time-series data sets.

相關內容

Sparse mixture of expert architectures (MoEs) scale model capacity without large increases in training or inference costs. Despite their success, MoEs suffer from a number of issues: training instability, token dropping, inability to scale the number of experts, or ineffective finetuning. In this work, we proposeSoft MoE, a fully-differentiable sparse Transformer that addresses these challenges, while maintaining the benefits of MoEs. Soft MoE performs an implicit soft assignment by passing different weighted combinations of all input tokens to each expert. As in other MoE works, experts in Soft MoE only process a subset of the (combined) tokens, enabling larger model capacity at lower inference cost. In the context of visual recognition, Soft MoE greatly outperforms standard Transformers (ViTs) and popular MoE variants (Tokens Choice and Experts Choice). For example, Soft MoE-Base/16 requires 10.5x lower inference cost (5.7x lower wall-clock time) than ViT-Huge/14 while matching its performance after similar training. Soft MoE also scales well: Soft MoE Huge/14 with 128 experts in 16 MoE layers has over 40x more parameters than ViT Huge/14, while inference time cost grows by only 2%, and it performs substantially better.

The shortest path problem in graphs is a cornerstone of AI theory and applications. Existing algorithms generally ignore edge weight computation time. We present a generalized framework for weighted directed graphs, where edge weight can be computed (estimated) multiple times, at increasing accuracy and run-time expense. This raises several generalized variants of the shortest path problem. We introduce the problem of finding a path with the tightest lower-bound on the optimal cost. We then present two complete algorithms for the generalized problem, and empirically demonstrate their efficacy.

We introduce a meta-model based on formal languages, dubbed formal choreographic languages, to study message-passing systems. Our framework allows us to generalise standard constructions from the literature and to compare them. In particular, we consider notions such as global view, local view, and projections from the former to the latter. The correctness of local views projected from global views is characterised in terms of a closure property. We consider a number of communication properties -- such as (dead)lock-freedom -- and give conditions on formal choreographic languages to guarantee them. Finally, we show how formal choreographic languages can capture existing formalisms; specifically we consider communicating finite-state machines, choreography automata, and multiparty session types. Notably, formal choreographic languages, differently from most approaches in the literature, can naturally model systems exhibiting non-regular behaviour.

Given a composite image, image harmonization aims to adjust the foreground illumination to be consistent with background. Previous methods have explored transforming foreground features to achieve competitive performance. In this work, we show that using global information to guide foreground feature transformation could achieve significant improvement. Besides, we propose to transfer the foreground-background relation from real images to composite images, which can provide intermediate supervision for the transformed encoder features. Additionally, considering the drawbacks of existing harmonization datasets, we also contribute a ccHarmony dataset which simulates the natural illumination variation. Extensive experiments on iHarmony4 and our contributed dataset demonstrate the superiority of our method. Our ccHarmony dataset is released at //github.com/bcmi/Image-Harmonization-Dataset-ccHarmony.

We evaluate benchmark deep reinforcement learning (DRL) algorithms on the task of portfolio optimisation under a simulator. The simulator is based on correlated geometric Brownian motion (GBM) with the Bertsimas-Lo (BL) market impact model. Using the Kelly criterion (log utility) as the objective, we can analytically derive the optimal policy without market impact and use it as an upper bound to measure performance when including market impact. We found that the off-policy algorithms DDPG, TD3 and SAC were unable to learn the right Q function due to the noisy rewards and therefore perform poorly. The on-policy algorithms PPO and A2C, with the use of generalised advantage estimation (GAE), were able to deal with the noise and derive a close to optimal policy. The clipping variant of PPO was found to be important in preventing the policy from deviating from the optimal once converged. In a more challenging environment where we have regime changes in the GBM parameters, we found that PPO, combined with a hidden Markov model (HMM) to learn and predict the regime context, is able to learn different policies adapted to each regime. Overall, we find that the sample complexity of these algorithms is too high, requiring more than 2m steps to learn a good policy in the simplest setting, which is equivalent to almost 8,000 years of daily prices.

Synthesis of distributed protocols is a hard, often undecidable, problem. Completion techniques provide partial remedy by turning the problem into a search problem. However, the space of candidate completions is still massive. In this paper, we propose optimization techniques to reduce the size of the search space by a factorial factor by exploiting symmetries (isomorphisms) in functionally equivalent solutions. We present both a theoretical analysis of this optimization as well as empirical results that demonstrate its effectiveness in synthesizing both the Alternating Bit Protocol and Two Phase Commit. Our experiments show that the optimized tool achieves a speedup of approximately 2 to 10 times compared to its unoptimized counterpart.

Recent artificial intelligence (AI) systems have reached milestones in "grand challenges" ranging from Go to protein-folding. The capability to retrieve medical knowledge, reason over it, and answer medical questions comparably to physicians has long been viewed as one such grand challenge. Large language models (LLMs) have catalyzed significant progress in medical question answering; Med-PaLM was the first model to exceed a "passing" score in US Medical Licensing Examination (USMLE) style questions with a score of 67.2% on the MedQA dataset. However, this and other prior work suggested significant room for improvement, especially when models' answers were compared to clinicians' answers. Here we present Med-PaLM 2, which bridges these gaps by leveraging a combination of base LLM improvements (PaLM 2), medical domain finetuning, and prompting strategies including a novel ensemble refinement approach. Med-PaLM 2 scored up to 86.5% on the MedQA dataset, improving upon Med-PaLM by over 19% and setting a new state-of-the-art. We also observed performance approaching or exceeding state-of-the-art across MedMCQA, PubMedQA, and MMLU clinical topics datasets. We performed detailed human evaluations on long-form questions along multiple axes relevant to clinical applications. In pairwise comparative ranking of 1066 consumer medical questions, physicians preferred Med-PaLM 2 answers to those produced by physicians on eight of nine axes pertaining to clinical utility (p < 0.001). We also observed significant improvements compared to Med-PaLM on every evaluation axis (p < 0.001) on newly introduced datasets of 240 long-form "adversarial" questions to probe LLM limitations. While further studies are necessary to validate the efficacy of these models in real-world settings, these results highlight rapid progress towards physician-level performance in medical question answering.

Human-in-the-loop aims to train an accurate prediction model with minimum cost by integrating human knowledge and experience. Humans can provide training data for machine learning applications and directly accomplish some tasks that are hard for computers in the pipeline with the help of machine-based approaches. In this paper, we survey existing works on human-in-the-loop from a data perspective and classify them into three categories with a progressive relationship: (1) the work of improving model performance from data processing, (2) the work of improving model performance through interventional model training, and (3) the design of the system independent human-in-the-loop. Using the above categorization, we summarize major approaches in the field, along with their technical strengths/ weaknesses, we have simple classification and discussion in natural language processing, computer vision, and others. Besides, we provide some open challenges and opportunities. This survey intends to provide a high-level summarization for human-in-the-loop and motivates interested readers to consider approaches for designing effective human-in-the-loop solutions.

Graph Neural Networks (GNNs) have been shown to be effective models for different predictive tasks on graph-structured data. Recent work on their expressive power has focused on isomorphism tasks and countable feature spaces. We extend this theoretical framework to include continuous features - which occur regularly in real-world input domains and within the hidden layers of GNNs - and we demonstrate the requirement for multiple aggregation functions in this context. Accordingly, we propose Principal Neighbourhood Aggregation (PNA), a novel architecture combining multiple aggregators with degree-scalers (which generalize the sum aggregator). Finally, we compare the capacity of different models to capture and exploit the graph structure via a novel benchmark containing multiple tasks taken from classical graph theory, alongside existing benchmarks from real-world domains, all of which demonstrate the strength of our model. With this work, we hope to steer some of the GNN research towards new aggregation methods which we believe are essential in the search for powerful and robust models.

Image segmentation is an important component of many image understanding systems. It aims to group pixels in a spatially and perceptually coherent manner. Typically, these algorithms have a collection of parameters that control the degree of over-segmentation produced. It still remains a challenge to properly select such parameters for human-like perceptual grouping. In this work, we exploit the diversity of segments produced by different choices of parameters. We scan the segmentation parameter space and generate a collection of image segmentation hypotheses (from highly over-segmented to under-segmented). These are fed into a cost minimization framework that produces the final segmentation by selecting segments that: (1) better describe the natural contours of the image, and (2) are more stable and persistent among all the segmentation hypotheses. We compare our algorithm's performance with state-of-the-art algorithms, showing that we can achieve improved results. We also show that our framework is robust to the choice of segmentation kernel that produces the initial set of hypotheses.

北京阿比特科技有限公司