亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Edge Computing (EC) offers a superior user experience by positioning cloud resources in close proximity to end users. The challenge of allocating edge resources efficiently while maximizing profit for the EC platform remains a sophisticated problem, especially with the added complexity of the online arrival of resource requests. To address this challenge, we propose to cast the problem as a multi-armed bandit problem and develop two novel online pricing mechanisms, the Kullback-Leibler Upper Confidence Bound (KL-UCB) algorithm and the Min-Max Optimal algorithm, for heterogeneous edge resource allocation. These mechanisms operate in real-time and do not require prior knowledge of demand distribution, which can be difficult to obtain in practice. The proposed posted pricing schemes allow users to select and pay for their preferred resources, with the platform dynamically adjusting resource prices based on observed historical data. Numerical results show the advantages of the proposed mechanisms compared to several benchmark schemes derived from traditional bandit algorithms, including the Epsilon-Greedy, basic UCB, and Thompson Sampling algorithms.

相關內容

Prediction of taxi service demand and supply is essential for improving customer's experience and provider's profit. Recently, graph neural networks (GNNs) have been shown promising for this application. This approach models city regions as nodes in a transportation graph and their relations as edges. GNNs utilize local node features and the graph structure in the prediction. However, more efficient forecasting can still be achieved by following two main routes; enlarging the scale of the transportation graph, and simultaneously exploiting different types of nodes and edges in the graphs. However, both approaches are challenged by the scalability of GNNs. An immediate remedy to the scalability challenge is to decentralize the GNN operation. However, this creates excessive node-to-node communication. In this paper, we first characterize the excessive communication needs for the decentralized GNN approach. Then, we propose a semi-decentralized approach utilizing multiple cloudlets, moderately sized storage and computation devices, that can be integrated with the cellular base stations. This approach minimizes inter-cloudlet communication thereby alleviating the communication overhead of the decentralized approach while promoting scalability due to cloudlet-level decentralization. Also, we propose a heterogeneous GNN-LSTM algorithm for improved taxi-level demand and supply forecasting for handling dynamic taxi graphs where nodes are taxis. Extensive experiments over real data show the advantage of the semi-decentralized approach as tested over our heterogeneous GNN-LSTM algorithm. Also, the proposed semi-decentralized GNN approach is shown to reduce the overall inference time by about an order of magnitude compared to centralized and decentralized inference schemes.

In an era where scientific experimentation is often costly, multi-fidelity emulation provides a powerful tool for predictive scientific computing. While there has been notable work on multi-fidelity modeling, existing models do not incorporate an important ``conglomerate'' property of multi-fidelity simulators, where the accuracies of different simulator components (modeling separate physics) are controlled by different fidelity parameters. Such conglomerate simulators are widely encountered in complex nuclear physics and astrophysics applications. We thus propose a new CONglomerate multi-FIdelity Gaussian process (CONFIG) model, which embeds this conglomerate structure within a novel non-stationary covariance function. We show that the proposed CONFIG model can capture prior knowledge on the numerical convergence of conglomerate simulators, which allows for cost-efficient emulation of multi-fidelity systems. We demonstrate the improved predictive performance of CONFIG over state-of-the-art models in a suite of numerical experiments and two applications, the first for emulation of cantilever beam deflection and the second for emulating the evolution of the quark-gluon plasma, which was theorized to have filled the Universe shortly after the Big Bang.

We consider the classic 1-center problem: Given a set $P$ of $n$ points in a metric space find the point in $P$ that minimizes the maximum distance to the other points of $P$. We study the complexity of this problem in $d$-dimensional $\ell_p$-metrics and in edit and Ulam metrics over strings of length $d$. Our results for the 1-center problem may be classified based on $d$ as follows. $\bullet$ Small $d$: Assuming the hitting set conjecture (HSC), we show that when $d=\omega(\log n)$, no subquadratic algorithm can solve 1-center problem in any of the $\ell_p$-metrics, or in edit or Ulam metrics. $\bullet$ Large $d$: When $d=\Omega(n)$, we extend our conditional lower bound to rule out subquartic algorithms for 1-center problem in edit metric (assuming Quantified SETH). On the other hand, we give a $(1+\epsilon)$-approximation for 1-center in Ulam metric with running time $\tilde{O_{\varepsilon}}(nd+n^2\sqrt{d})$. We also strengthen some of the above lower bounds by allowing approximations or by reducing the dimension $d$, but only against a weaker class of algorithms which list all requisite solutions. Moreover, we extend one of our hardness results to rule out subquartic algorithms for the well-studied 1-median problem in the edit metric, where given a set of $n$ strings each of length $n$, the goal is to find a string in the set that minimizes the sum of the edit distances to the rest of the strings in the set.

There is increasing interest in allocating treatments based on observed individual characteristics: examples include targeted marketing, individualized credit offers, and heterogeneous pricing. Treatment personalization introduces incentives for individuals to modify their behavior to obtain a better treatment. Strategic behavior shifts the joint distribution of covariates and potential outcomes. The optimal rule without strategic behavior allocates treatments only to those with a positive Conditional Average Treatment Effect. With strategic behavior, we show that the optimal rule can involve randomization, allocating treatments with less than 100% probability even to those who respond positively on average to the treatment. We propose a sequential experiment based on Bayesian Optimization that converges to the optimal treatment rule without parametric assumptions on individual strategic behavior.

We introduce a model for multi-agent interaction problems to understand how a heterogeneous team of agents should organize its resources to tackle a heterogeneous team of attackers. This model is inspired by how the human immune system tackles a diverse set of pathogens. The key property of this model is "cross-reactivity" which enables a particular defender type to respond strongly to some attackers but weakly to a few different types of attackers. Due to this, the optimal defender distribution that minimizes the harm incurred by attackers is supported on a discrete set. This allows the defender team to allocate resources to a few types and yet tackle a large number of attacker types. We study this model in different settings to characterize a set of guiding principles for control problems with heterogeneous teams of agents, e.g., sensitivity of the harm to sub-optimal defender distributions, teams consisting of a small number of attackers and defenders, estimating and tackling an evolving attacker distribution, and competition between defenders that gives near-optimal behavior using decentralized computation of the control. We also compare this model with reinforcement-learned policies for the defender team.

Since its first release in the late 1990s, Wi-Fi has been updated to keep up with evolving user needs. Recently, Wi-Fi and other radio access technologies have been pushed to their edge when serving Augmented Reality (AR) applications. AR applications require high throughput, low latency, and high reliability to ensure a high-quality user experience. The 802.11be amendment, which will be marketed as Wi-Fi 7, introduces several features that aim to enhance its capabilities to support challenging applications like AR. One of the main features introduced in this amendment is Multi-Link Operation (MLO) which allows nodes to transmit and receive over multiple links concurrently. When using MLO, traffic is distributed among links using an implementation-specific traffic-to-link allocation policy. This paper aims to evaluate the performance of MLO, using different policies, in serving AR applications compared to Single-Link (SL). Experimental simulations using an event-based Wi-Fi simulator have been conducted. Our results show the general superiority of MLO when serving AR applications. MLO achieves lower latency and serves a higher number of AR users compared to SL with the same frequency resources. In addition, increasing the number of links can improve the performance of MLO. Regarding traffic-to-link allocation policies, we found that policies can be more susceptible to channel blocking, resulting in possible performance degradation.

We consider a resource-constrained Edge Device (ED) embedded with a small-size ML model (S-ML) for a generic classification application, and an Edge Server (ES) that hosts a large-size ML model (L-ML). Since the inference accuracy of S-ML is lower than that of the L-ML, offloading all the data samples to the ES results in high inference accuracy, but it defeats the purpose of embedding S-ML on the ED and deprives the benefits of reduced latency, bandwidth savings, and energy efficiency of doing local inference. To get the best out of both worlds, i.e., the benefits of doing inference on the ED and the benefits of doing inference on ES, we explore the idea of Hierarchical Inference (HI), wherein S-ML inference is only accepted when it is correct, otherwise the data sample is offloaded for L-ML inference. However, the ideal implementation of HI is infeasible as the correctness of the S-ML inference is not known to the ED. We thus propose an online meta-learning framework to predict the correctness of the S-ML inference. The resulting online learning problem turns out to be a Prediction with Expert Advice (PEA) problem with continuous expert space. We consider the full feedback scenario, where the ED receives feedback on the correctness of the S-ML once it accepts the inference, and the no-local feedback scenario, where the ED does not receive the ground truth for the classification, and propose the HIL-F and HIL-N algorithms and prove a regret bound that is sublinear with the number of data samples. We evaluate and benchmark the performance of the proposed algorithms for image classification applications using four datasets, namely, Imagenette, Imagewoof, MNIST, and CIFAR-10.

The Metaverse will provide numerous immersive applications for human users, by consolidating technologies like extended reality (XR), video streaming, and cellular networks. Optimizing wireless communications to enable the human-centric Metaverse is important to satisfy the demands of mobile users. In this paper, we formulate the optimization of the system utility-cost ratio (UCR) for the Metaverse over wireless networks. Our human-centric utility measure for virtual reality (VR) applications of the Metaverse represents users' perceptual assessment of the VR video quality as a function of the data rate and the video resolution, and is learnt from real datasets. The variables jointly optimized in our problem include the allocation of both communication and computation resources as well as VR video resolutions. The system cost in our problem comprises the energy consumption and delay, and is non-convex with respect to the optimization variables due to fractions in the mathematical expressions. To solve the non-convex optimization, we develop a novel fractional programming technique, which contributes to optimization theory and has broad applicability beyond our paper. Our proposed algorithm for the system UCR optimization is computationally efficient and finds a stationary point to the constrained optimization. Through extensive simulations, our algorithm is demonstrated to outperform other approaches.

Federated learning (FL) is a privacy-preserving distributed machine learning paradigm that enables collaborative training among geographically distributed and heterogeneous devices without gathering their data. Extending FL beyond the supervised learning models, federated reinforcement learning (FRL) was proposed to handle sequential decision-making problems in edge computing systems. However, the existing FRL algorithms directly combine model-free RL with FL, thus often leading to high sample complexity and lacking theoretical guarantees. To address the challenges, we propose a novel FRL algorithm that effectively incorporates model-based RL and ensemble knowledge distillation into FL for the first time. Specifically, we utilise FL and knowledge distillation to create an ensemble of dynamics models for clients, and then train the policy by solely using the ensemble model without interacting with the environment. Furthermore, we theoretically prove that the monotonic improvement of the proposed algorithm is guaranteed. The extensive experimental results demonstrate that our algorithm obtains much higher sample efficiency compared to classic model-free FRL algorithms in the challenging continuous control benchmark environments under edge computing settings. The results also highlight the significant impact of heterogeneous client data and local model update steps on the performance of FRL, validating the insights obtained from our theoretical analysis.

Deriving strategies for multiple agents under adversarial scenarios poses a significant challenge in attaining both optimality and efficiency. In this paper, we propose an efficient defense strategy for cooperative defense against a group of attackers in a convex environment. The defenders aim to minimize the total number of attackers that successfully enter the target set without prior knowledge of the attacker's strategy. Our approach involves a two-scale method that decomposes the problem into coordination against a single attacker and assigning defenders to attackers. We first develop a coordination strategy for multiple defenders against a single attacker, implementing online convex programming. This results in the maximum defense-winning region of initial joint states from which the defender can successfully defend against a single attacker. We then propose an allocation algorithm that significantly reduces computational effort required to solve the induced integer linear programming problem. The allocation guarantees defense performance enhancement as the game progresses. We perform various simulations to verify the efficiency of our algorithm compared to the state-of-the-art approaches, including the one using the Gazabo platform with Robot Operating System.

北京阿比特科技有限公司