亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper, we study an underexplored, yet important and challenging problem: counting the number of distinct sounds in raw audio characterized by a high degree of polyphonicity. We do so by systematically proposing a novel end-to-end trainable neural network (which we call DyDecNet, consisting of a dyadic decomposition front-end and backbone network), and quantifying the difficulty level of counting depending on sound polyphonicity. The dyadic decomposition front-end progressively decomposes the raw waveform dyadically along the frequency axis to obtain time-frequency representation in multi-stage, coarse-to-fine manner. Each intermediate waveform convolved by a parent filter is further processed by a pair of child filters that evenly split the parent filter's carried frequency response, with the higher-half child filter encoding the detail and lower-half child filter encoding the approximation. We further introduce an energy gain normalization to normalize sound loudness variance and spectrum overlap, and apply it to each intermediate parent waveform before feeding it to the two child filters. To better quantify sound counting difficulty level, we further design three polyphony-aware metrics: polyphony ratio, max polyphony and mean polyphony. We test DyDecNet on various datasets to show its superiority, and we further show dyadic decomposition network can be used as a general front-end to tackle other acoustic tasks.

相關內容

Networking:IFIP International Conferences on Networking。 Explanation:國際網絡會議。 Publisher:IFIP。 SIT:

Cloud-based large language models (LLMs) such as ChatGPT have increasingly become integral to daily operations, serving as vital tools across various applications. While these models offer substantial benefits in terms of accessibility and functionality, they also introduce significant privacy concerns: the transmission and storage of user data in cloud infrastructures pose substantial risks of data breaches and unauthorized access to sensitive information; even if the transmission and storage of data is encrypted, the LLM service provider itself still knows the real contents of the data, preventing individuals or entities from confidently using such LLM services. To address these concerns, this paper proposes a simple yet effective mechanism EmojiCrypt to protect user privacy. It uses Emoji to encrypt the user inputs before sending them to LLM, effectively rendering them indecipherable to human or LLM's examination while retaining the original intent of the prompt, thus ensuring the model's performance remains unaffected. We conduct experiments on three tasks, personalized recommendation, sentiment analysis, and tabular data analysis. Experiment results reveal that EmojiCrypt can encrypt personal information within prompts in such a manner that not only prevents the discernment of sensitive data by humans or LLM itself, but also maintains or even improves the precision without further tuning, achieving comparable or even better task accuracy than directly prompting the LLM without prompt encryption. These results highlight the practicality of adopting encryption measures that safeguard user privacy without compromising the functional integrity and performance of LLMs. Code and dataset are available at //github.com/agiresearch/EmojiCrypt.

In this paper, we analyze the character networks extracted from three popular television series and explore the relationship between a TV show episode's character network metrics and its review from IMDB. Character networks are graphs created from the plot of a TV show that represents the interactions of characters in scenes, indicating the presence of a connection between them. We calculate various network metrics for each episode, such as node degree and graph density, and use these metrics to explore the potential relationship between network metrics and TV series reviews from IMDB. Our results show that certain network metrics of character interactions in episodes have a strong correlation with the review score of TV series. Our research aims to provide more quantitative information that can help TV producers understand how to adjust the character dynamics of future episodes to appeal to their audience. By understanding the impact of character interactions on audience engagement and enjoyment, producers can make informed decisions about the development of their shows.

In this study, we introduce BirdNeRF, an adaptation of Neural Radiance Fields (NeRF) designed specifically for reconstructing large-scale scenes using aerial imagery. Unlike previous research focused on small-scale and object-centric NeRF reconstruction, our approach addresses multiple challenges, including (1) Addressing the issue of slow training and rendering associated with large models. (2) Meeting the computational demands necessitated by modeling a substantial number of images, requiring extensive resources such as high-performance GPUs. (3) Overcoming significant artifacts and low visual fidelity commonly observed in large-scale reconstruction tasks due to limited model capacity. Specifically, we present a novel bird-view pose-based spatial decomposition algorithm that decomposes a large aerial image set into multiple small sets with appropriately sized overlaps, allowing us to train individual NeRFs of sub-scene. This decomposition approach not only decouples rendering time from the scene size but also enables rendering to scale seamlessly to arbitrarily large environments. Moreover, it allows for per-block updates of the environment, enhancing the flexibility and adaptability of the reconstruction process. Additionally, we propose a projection-guided novel view re-rendering strategy, which aids in effectively utilizing the independently trained sub-scenes to generate superior rendering results. We evaluate our approach on existing datasets as well as against our own drone footage, improving reconstruction speed by 10x over classical photogrammetry software and 50x over state-of-the-art large-scale NeRF solution, on a single GPU with similar rendering quality.

In this paper, we propose a methodology for the analysis of questionnaire data along with its application on discovering insights from investor data motivated by a day trading competition. The questionnaire includes categorical questions, which are reduced to binary questions, 'yes' or 'no'. The methodology reduces dimensionality by grouping questions and participants with similar responses using clustering analysis. Rule discovery was performed by using a conversion rate metric. Innovative visual representations were proposed to validate the cluster analysis and the relation discovery between questions. When crossing with financial data, additional insights were revealed related to the recognized clusters.

In this paper, we introduce LLaVA-$\phi$ (LLaVA-Phi), an efficient multi-modal assistant that harnesses the power of the recently advanced small language model, Phi-2, to facilitate multi-modal dialogues. LLaVA-Phi marks a notable advancement in the realm of compact multi-modal models. It demonstrates that even smaller language models, with as few as 2.7B parameters, can effectively engage in intricate dialogues that integrate both textual and visual elements, provided they are trained with high-quality corpora. Our model delivers commendable performance on publicly available benchmarks that encompass visual comprehension, reasoning, and knowledge-based perception. Beyond its remarkable performance in multi-modal dialogue tasks, our model opens new avenues for applications in time-sensitive environments and systems that require real-time interaction, such as embodied agents. It highlights the potential of smaller language models to achieve sophisticated levels of understanding and interaction, while maintaining greater resource efficiency.The project is available at {//github.com/zhuyiche/llava-phi}.

Honeypots are essential tools in cybersecurity. However, most of them (even the high-interaction ones) lack the required realism to engage and fool human attackers. This limitation makes them easily discernible, hindering their effectiveness. This work introduces a novel method to create dynamic and realistic software honeypots based on Large Language Models. Preliminary results indicate that LLMs can create credible and dynamic honeypots capable of addressing important limitations of previous honeypots, such as deterministic responses, lack of adaptability, etc. We evaluated the realism of each command by conducting an experiment with human attackers who needed to say if the answer from the honeypot was fake or not. Our proposed honeypot, called shelLM, reached an accuracy of 0.92. The source code and prompts necessary for replicating the experiments have been made publicly available.

We present a novel approach for the detection of deepfake videos using a pair of vision transformers pre-trained by a self-supervised masked autoencoding setup. Our method consists of two distinct components, one of which focuses on learning spatial information from individual RGB frames of the video, while the other learns temporal consistency information from optical flow fields generated from consecutive frames. Unlike most approaches where pre-training is performed on a generic large corpus of images, we show that by pre-training on smaller face-related datasets, namely Celeb-A (for the spatial learning component) and YouTube Faces (for the temporal learning component), strong results can be obtained. We perform various experiments to evaluate the performance of our method on commonly used datasets namely FaceForensics++ (Low Quality and High Quality, along with a new highly compressed version named Very Low Quality) and Celeb-DFv2 datasets. Our experiments show that our method sets a new state-of-the-art on FaceForensics++ (LQ, HQ, and VLQ), and obtains competitive results on Celeb-DFv2. Moreover, our method outperforms other methods in the area in a cross-dataset setup where we fine-tune our model on FaceForensics++ and test on CelebDFv2, pointing to its strong cross-dataset generalization ability.

In the rapidly evolving landscape of information retrieval, search engines strive to provide more personalized and relevant results to users. Query suggestion systems play a crucial role in achieving this goal by assisting users in formulating effective queries. However, existing query suggestion systems mainly rely on textual inputs, potentially limiting user search experiences for querying images. In this paper, we introduce a novel Multimodal Query Suggestion (MMQS) task, which aims to generate query suggestions based on user query images to improve the intentionality and diversity of search results. We present the RL4Sugg framework, leveraging the power of Large Language Models (LLMs) with Multi-Agent Reinforcement Learning from Human Feedback to optimize the generation process. Through comprehensive experiments, we validate the effectiveness of RL4Sugg, demonstrating a 18% improvement compared to the best existing approach. Moreover, the MMQS has been transferred into real-world search engine products, which yield enhanced user engagement. Our research advances query suggestion systems and provides a new perspective on multimodal information retrieval.

Large Language Models (LLMs) have achieved remarkable success with their billion-level parameters, yet they incur high inference overheads. The emergence of activation sparsity in LLMs provides a natural approach to reduce this cost by involving only parts of the parameters for inference. Existing methods only focus on utilizing this naturally formed activation sparsity, overlooking the potential for further amplifying this inherent sparsity. In this paper, we hypothesize that LLMs can learn to be efficient by achieving more structured activation sparsity.To achieve this, we introduce a novel algorithm, Learn-To-be-Efficient (LTE), designed to train efficiency-aware LLMs to learn to activate fewer neurons and achieve a better trade-off between sparsity and performance. Furthermore, unlike SOTA MoEfication methods, which mainly focus on ReLU-based models, LTE can also be applied to LLMs like GPT and LLaMA with soft activation functions. We evaluate LTE on four models and eleven datasets. The experiments show that LTE achieves a better trade-off between sparsity and task performance. For instance, LTE with LLaMA provides a 1.83x-2.59x FLOPs speed-up on language generation tasks, outperforming the state-of-the-art methods.

In this paper, we introduce a two-level attention schema, Poolingformer, for long document modeling. Its first level uses a smaller sliding window pattern to aggregate information from neighbors. Its second level employs a larger window to increase receptive fields with pooling attention to reduce both computational cost and memory consumption. We first evaluate Poolingformer on two long sequence QA tasks: the monolingual NQ and the multilingual TyDi QA. Experimental results show that Poolingformer sits atop three official leaderboards measured by F1, outperforming previous state-of-the-art models by 1.9 points (79.8 vs. 77.9) on NQ long answer, 1.9 points (79.5 vs. 77.6) on TyDi QA passage answer, and 1.6 points (67.6 vs. 66.0) on TyDi QA minimal answer. We further evaluate Poolingformer on a long sequence summarization task. Experimental results on the arXiv benchmark continue to demonstrate its superior performance.

北京阿比特科技有限公司