亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Generating safe motion plans in real-time is necessary for the wide-scale deployment of robots in unstructured and human-centric environments. These motion plans must be safe to ensure humans are not harmed and nearby objects are not damaged. However, they must also be generated in real-time to ensure the robot can quickly adapt to changes in the environment. Many trajectory optimization methods introduce heuristics that trade-off safety and real-time performance, which can lead to potentially unsafe plans. This paper addresses this challenge by proposing Safe Planning for Articulated Robots Using Reachability-based Obstacle Avoidance With Spheres (SPARROWS). SPARROWS is a receding-horizon trajectory planner that utilizes the combination of a novel reachable set representation and an exact signed distance function to generate provably-safe motion plans. At runtime, SPARROWS uses parameterized trajectories to compute reachable sets composed entirely of spheres that overapproximate the swept volume of the robot's motion. SPARROWS then performs trajectory optimization to select a safe trajectory that is guaranteed to be collision-free. We demonstrate that SPARROWS' novel reachable set is significantly less conservative than previous approaches. We also demonstrate that SPARROWS outperforms a variety of state-of-the-art methods in solving challenging motion planning tasks in cluttered environments. Code, data, and video demonstrations can be found at \url{//roahmlab.github.io/sparrows/}.

相關內容

Fast development in science and technology has driven the need for proper statistical tools to capture special data features such as abrupt changes or sharp contrast. Many inverse problems in data science require spatiotemporal solutions derived from a sequence of time-dependent objects with these spatial features, e.g., dynamic reconstruction of computerized tomography (CT) images with edges. Conventional methods based on Gaussian processes (GP) often fall short in providing satisfactory solutions since they tend to offer over-smooth priors. Recently, the Besov process (BP), defined by wavelet expansions with random coefficients, has emerged as a more suitable prior for Bayesian inverse problems of this nature. While BP excels in handling spatial inhomogeneity, it does not automatically incorporate temporal correlation inherited in the dynamically changing objects. In this paper, we generalize BP to a novel spatiotemporal Besov process (STBP) by replacing the random coefficients in the series expansion with stochastic time functions as Q-exponential process (Q-EP) which governs the temporal correlation structure. We thoroughly investigate the mathematical and statistical properties of STBP. A white-noise representation of STBP is also proposed to facilitate the inference. Simulations, two limited-angle CT reconstruction examples and a highly non-linear inverse problem involving Navier-Stokes equation are used to demonstrate the advantage of the proposed STBP in preserving spatial features while accounting for temporal changes compared with the classic STGP and a time-uncorrelated approach.

The large success of deep learning based methods in Visual Question Answering (VQA) has concurrently increased the demand for explainable methods. Most methods in Explainable Artificial Intelligence (XAI) focus on generating post-hoc explanations rather than taking an intrinsic approach, the latter characterizing an interpretable model. In this work, we introduce an interpretable approach for graph-based VQA and demonstrate competitive performance on the GQA dataset. This approach bridges the gap between interpretability and performance. Our model is designed to intrinsically produce a subgraph during the question-answering process as its explanation, providing insight into the decision making. To evaluate the quality of these generated subgraphs, we compare them against established post-hoc explainability methods for graph neural networks, and perform a human evaluation. Moreover, we present quantitative metrics that correlate with the evaluations of human assessors, acting as automatic metrics for the generated explanatory subgraphs. Our implementation is available at //github.com/DigitalPhonetics/Intrinsic-Subgraph-Generation-for-VQA.

The rising interest of generalist robots seek to create robots with versatility to handle multiple tasks in a variety of environments, and human will interact with such robots through immersive interfaces. In the context of human-robot interaction (HRI), this survey provides an exhaustive review of the applications of extended reality (XR) technologies in the field of remote HRI. We developed a systematic search strategy based on the PRISMA methodology. From the initial 2,561 articles selected, 100 research papers that met our inclusion criteria were included. We categorized and summarized the domain in detail, delving into XR technologies, including augmented reality (AR), virtual reality (VR), and mixed reality (MR), and their applications in facilitating intuitive and effective remote control and interaction with robotic systems. The survey highlights existing articles on the application of XR technologies, user experience enhancement, and various interaction designs for XR in remote HRI, providing insights into current trends and future directions. We also identified potential gaps and opportunities for future research to improve remote HRI systems through XR technology to guide and inform future XR and robotics research.

Efficient path planning for autonomous mobile robots is a critical problem across numerous domains, where optimizing both time and energy consumption is paramount. This paper introduces a novel methodology that considers the dynamic influence of an environmental flow field and considers geometric constraints, including obstacles and forbidden zones, enriching the complexity of the planning problem. We formulate it as a multi-objective optimal control problem, propose a novel transformation called Harmonic Transformation, and apply a semi-Lagrangian scheme to solve it. The set of Pareto efficient solutions is obtained considering two distinct approaches: a deterministic method and an evolutionary-based one, both of which are designed to make use of the proposed Harmonic Transformation. Through an extensive analysis of these approaches, we demonstrate their efficacy in finding optimized paths.

Aerial robots have garnered significant attention due to their potential applications in various industries, such as inspection, search and rescue, and drone delivery. Successful missions often depend on the ability of these robots to grasp and land effectively. This paper presents a novel modular soft gripper design tailored explicitly for aerial grasping and landing operations. The proposed modular pneumatic soft gripper incorporates a feed-forward proportional controller to regulate pressure, enabling compliant gripping capabilities. The modular connectors of the soft fingers offer two configurations for the 4-tip soft gripper, H-base (cylindrical) and X-base (spherical), allowing adaptability to different target objects. Additionally, the gripper can serve as a soft landing gear when deflated, eliminating the need for an extra landing gear. This design reduces weight, simplifies aerial manipulation control, and enhances flight efficiency. We demonstrate the efficacy of indoor aerial grasping and achieve a maximum payload of 217 g using the proposed soft aerial vehicle and its H-base pneumatic soft gripper (808 g).

Data-driven optimization models have the potential to significantly improve hospital capacity management, particularly during demand surges, when effective allocation of capacity is most critical and challenging. However, integrating models into existing processes in a way that provides value requires recognizing that hospital administrators are ultimately responsible for making capacity management decisions, and carefully building trustworthy and accessible tools for them. In this study, we develop an interactive, user-friendly, electronic dashboard for informing hospital capacity management decisions during surge periods. The dashboard integrates real-time hospital data, predictive analytics, and optimization models. It allows hospital administrators to interactively customize parameters, enabling them to explore a range of scenarios, and provides real-time updates on recommended optimal decisions. The dashboard was created through a participatory design process, involving hospital administrators in the development team to ensure practical utility, trustworthiness, transparency, explainability, and usability. We successfully deployed our dashboard within the Johns Hopkins Health System during the height of the COVID-19 pandemic, addressing the increased need for tools to inform hospital capacity management. It was used on a daily basis, with results regularly communicated to hospital leadership. This study demonstrates the practical application of a prospective, data-driven, interactive decision-support tool for hospital system capacity management.

We propose a data-driven control method for systems with aleatoric uncertainty, for example, robot fleets with variations between agents. Our method leverages shared trajectory data to increase the robustness of the designed controller and thus facilitate transfer to new variations without the need for prior parameter and uncertainty estimations. In contrast to existing work on experience transfer for performance, our approach focuses on robustness and uses data collected from multiple realizations to guarantee generalization to unseen ones. Our method is based on scenario optimization combined with recent formulations for direct data-driven control. We derive lower bounds on the amount of data required to achieve quadratic stability for probabilistic systems with aleatoric uncertainty and demonstrate the benefits of our data-driven method through a numerical example. We find that the learned controllers generalize well to high variations in the dynamics even when based on only a few short open-loop trajectories. Robust experience transfer enables the design of safe and robust controllers that work out of the box without any additional learning during deployment.

Spatio-temporal forecasting is challenging attributing to the high nonlinearity in temporal dynamics as well as complex location-characterized patterns in spatial domains, especially in fields like weather forecasting. Graph convolutions are usually used for modeling the spatial dependency in meteorology to handle the irregular distribution of sensors' spatial location. In this work, a novel graph-based convolution for imitating the meteorological flows is proposed to capture the local spatial patterns. Based on the assumption of smoothness of location-characterized patterns, we propose conditional local convolution whose shared kernel on nodes' local space is approximated by feedforward networks, with local representations of coordinate obtained by horizon maps into cylindrical-tangent space as its input. The established united standard of local coordinate system preserves the orientation on geography. We further propose the distance and orientation scaling terms to reduce the impacts of irregular spatial distribution. The convolution is embedded in a Recurrent Neural Network architecture to model the temporal dynamics, leading to the Conditional Local Convolution Recurrent Network (CLCRN). Our model is evaluated on real-world weather benchmark datasets, achieving state-of-the-art performance with obvious improvements. We conduct further analysis on local pattern visualization, model's framework choice, advantages of horizon maps and etc.

The recent proliferation of knowledge graphs (KGs) coupled with incomplete or partial information, in the form of missing relations (links) between entities, has fueled a lot of research on knowledge base completion (also known as relation prediction). Several recent works suggest that convolutional neural network (CNN) based models generate richer and more expressive feature embeddings and hence also perform well on relation prediction. However, we observe that these KG embeddings treat triples independently and thus fail to cover the complex and hidden information that is inherently implicit in the local neighborhood surrounding a triple. To this effect, our paper proposes a novel attention based feature embedding that captures both entity and relation features in any given entity's neighborhood. Additionally, we also encapsulate relation clusters and multihop relations in our model. Our empirical study offers insights into the efficacy of our attention based model and we show marked performance gains in comparison to state of the art methods on all datasets.

Deep neural networks (DNNs) have been found to be vulnerable to adversarial examples resulting from adding small-magnitude perturbations to inputs. Such adversarial examples can mislead DNNs to produce adversary-selected results. Different attack strategies have been proposed to generate adversarial examples, but how to produce them with high perceptual quality and more efficiently requires more research efforts. In this paper, we propose AdvGAN to generate adversarial examples with generative adversarial networks (GANs), which can learn and approximate the distribution of original instances. For AdvGAN, once the generator is trained, it can generate adversarial perturbations efficiently for any instance, so as to potentially accelerate adversarial training as defenses. We apply AdvGAN in both semi-whitebox and black-box attack settings. In semi-whitebox attacks, there is no need to access the original target model after the generator is trained, in contrast to traditional white-box attacks. In black-box attacks, we dynamically train a distilled model for the black-box model and optimize the generator accordingly. Adversarial examples generated by AdvGAN on different target models have high attack success rate under state-of-the-art defenses compared to other attacks. Our attack has placed the first with 92.76% accuracy on a public MNIST black-box attack challenge.

北京阿比特科技有限公司