We analyze the performance of a reduced-order simulation of geometric meta-materials based on zigzag patterns using a simplified representation. As geometric meta-materials we denote planar cellular structures which can be fabricated in 2d and bent elastically such that they approximate doubly-curved 2-manifold surfaces in 3d space. They obtain their elasticity attributes mainly from the geometry of their cellular elements and their connections. In this paper we focus on cells build from so-called zigzag springs. The physical properties of the base material (i.e., the physical substance) influence the behavior as well, but we essentially factor them out by keeping them constant. The simulation of such complex geometric structures comes with a high computational cost, thus we propose an approach to reduce it by abstracting the zigzag cells by a simpler model and by learning the properties of their elastic deformation behavior. In particular, we analyze the influence of the sampling of the full parameter space and the expressiveness of the reduced model compared to the full model. Based on these observations, we draw conclusions on how to simulate such complex meso-structures with simpler models.
In this work, we introduce a time memory formalism in poroelasticity model that couples the pressure and displacement. We assume this multiphysics process occurs in multicontinuum media. The mathematical model contains a coupled system of equations for pressures in each continuum and elasticity equations for displacements of the medium. We assume that the temporal dynamics is governed by fractional derivatives following some works in the literature. We derive an implicit finite difference approximation for time discretization based on the Caputo time fractional derivative. A Discrete Fracture Model (DFM) is used to model fluid flow through fractures and treat the complex network of fractures. We assume different fractional powers in fractures and matrix due to slow and fast dynamics. We develop a coarse grid approximation based on the Generalized Multiscale Finite Element Method (GMsFEM), where we solve local spectral problems for construction of the multiscale basis functions. We present numerical results for the two-dimensional model problems in fractured heterogeneous porous media. We investigate error analysis between reference (fine-scale) solution and multiscale solution with different numbers of multiscale basis functions. The results show that the proposed method can provide good accuracy on a coarse grid.
The state of art of electromagnetic integral equations has seen significant growth over the past few decades, overcoming some of the fundamental bottlenecks: computational complexity, low frequency and dense discretization breakdown, preconditioning, and so on. Likewise, the community has seen extensive investment in development of methods for higher order analysis, in both geometry and physics. Unfortunately, these standard geometric descriptors are continuous, but their normals are discontinuous at the boundary between triangular tessellations of control nodes, or patches, with a few exceptions; as a result, one needs to define additional mathematical infrastructure to define physical basis sets for vector problems. In stark contrast, the geometric representation used for design are second order differentiable almost everywhere on the surfaces. Using these description for analysis opens the door to several possibilities, and is the area we explore in this paper. Our focus is on Loop subdivision based isogeometric methods. In this paper, our goals are two fold: (i) development of computational infrastructure for isogeometric analysis of electrically large simply connected objects, and (ii) to introduce the notion of manifold harmonics transforms and its utility in computational electromagnetics. Several results highlighting the efficacy of these two methods are presented.
Rayleigh-Taylor instability is a classical hydrodynamic instability of great interest in various disciplines of science and engineering, including astrophyics, atmospheric sciences and climate, geophysics, and fusion energy. Analytical methods cannot be applied to explain the long-time behavior of Rayleigh-Taylor instability, and therefore numerical simulation of the full problem is required. However, in order to capture the growth of amplitude of perturbations accurately, both the spatial and temporal discretization need to be extremely fine for traditional numerical methods, and the long-time simulation may become prohibitively expensive. In this paper, we propose efficient reduced order model techniques to accelerate the simulation of Rayleigh-Taylor instability in compressible gas dynamics. We introduce a general framework for decomposing the solution manifold to construct the temporal domain partition and temporally-local reduced order model construction with varying Atwood number. We propose two practical approaches in this framework, namely decomposition by using physical time and penetration distance respectively. Numerical results are presented to examine the performance of the proposed approaches.
We present a fast direct solver for boundary integral equations on complex surfaces in three dimensions, using an extension of the recently introduced strong recursive skeletonization scheme. For problems that are not highly oscillatory, our algorithm computes an ${LU}$-like hierarchical factorization of the dense system matrix, permitting application of the inverse in $O(N)$ time, where $N$ is the number of unknowns on the surface. The factorization itself also scales linearly with the system size, albeit with a somewhat larger constant. The scheme is built on a level-restricted, adaptive octree data structure and therefore it is compatible with highly nonuniform discretizations. Furthermore, the scheme is coupled with high-order accurate locally-corrected Nystr\"om quadrature methods to integrate the singular and weakly-singular Green's functions used in the integral representations. Our method has immediate application to a variety of problems in computational physics. We concentrate here on studying its performance in acoustic scattering (governed by the Helmholtz equation) at low to moderate frequencies.
Stochastic simulators are an indispensable tool in many branches of science. Often based on first principles, they deliver a series of samples whose distribution implicitly defines a probability measure to describe the phenomena of interest. However, the fidelity of these simulators is not always sufficient for all scientific purposes, necessitating the construction of ad-hoc corrections to "calibrate" the simulation and ensure that its output is a faithful representation of reality. In this paper, we leverage methods from transportation theory to construct such corrections in a systematic way. We use a neural network to compute minimal modifications to the individual samples produced by the simulator such that the resulting distribution becomes properly calibrated. We illustrate the method and its benefits in the context of experimental particle physics, where the need for calibrated stochastic simulators is particularly pronounced.
High-resolution simulations of particle-based kinetic plasma models typically require a high number of particles and thus often become computationally intractable. This is exacerbated in multi-query simulations, where the problem depends on a set of parameters. In this work, we derive reduced order models for the semi-discrete Hamiltonian system resulting from a geometric particle-in-cell approximation of the parametric Vlasov-Poisson equations. Since the problem's non-dissipative and highly nonlinear nature makes it reducible only locally in time, we adopt a nonlinear reduced basis approach where the reduced phase space evolves in time. This strategy allows a significant reduction in the number of simulated particles, but the evaluation of the nonlinear operators associated with the Vlasov-Poisson coupling remains computationally expensive. We propose a novel reduction of the nonlinear terms that combines adaptive parameter sampling and hyper-reduction techniques to address this. The proposed approach allows decoupling the operations having a cost dependent on the number of particles from those that depend on the instances of the required parameters. In particular, in each time step, the electric potential is approximated via dynamic mode decomposition (DMD) and the particle-to-grid map via a discrete empirical interpolation method (DEIM). These approximations are constructed from data obtained from a past temporal window at a few selected values of the parameters to guarantee a computationally efficient adaptation. The resulting DMD-DEIM reduced dynamical system retains the Hamiltonian structure of the full model, provides good approximations of the solution, and can be solved at a reduced computational cost.
We propose a new unfitted finite element method for simulation of two-phase flows in presence of insoluble surfactant. The key features of the method are 1) discrete conservation of surfactant mass; 2) the possibility of having meshes that do not conform to the evolving interface separating the immiscible fluids; 3) accurate approximation of quantities with weak or strong discontinuities across evolving geometries such as the velocity field and the pressure. The new discretization of the incompressible Navier--Stokes equations coupled to the convection-diffusion equation modeling the surfactant transport on evolving surfaces is based on a space-time cut finite element formulation with quadrature in time and a stabilization term in the weak formulation that provides function extension. The proposed strategy utilize the same computational mesh for the discretization of the surface Partial Differential Equation (PDE) and the bulk PDEs and can be combined with different techniques for representing and evolving the interface, here the level set method is used. Numerical simulations in both two and three space dimensions are presented including simulations showing the role of surfactant in the interaction between two drops.
High-resolution simulations of particle-based kinetic plasma models typically require a high number of particles and thus often become computationally intractable. This is exacerbated in multi-query simulations, where the problem depends on a set of parameters. In this work, we derive reduced order models for the semi-discrete Hamiltonian system resulting from a geometric particle-in-cell approximation of the parametric Vlasov-Poisson equations. Since the problem's non-dissipative and highly nonlinear nature makes it reducible only locally in time, we adopt a nonlinear reduced basis approach where the reduced phase space evolves in time. This strategy allows a significant reduction in the number of simulated particles, but the evaluation of the nonlinear operators associated with the Vlasov-Poisson coupling remains computationally expensive. We propose a novel reduction of the nonlinear terms that combines adaptive parameter sampling and hyper-reduction techniques to address this. The proposed approach allows decoupling the operations having a cost dependent on the number of particles from those that depend on the instances of the required parameters. In particular, in each time step, the electric potential is approximated via dynamic mode decomposition (DMD) and the particle-to-grid map via a discrete empirical interpolation method (DEIM). These approximations are constructed from data obtained from a past temporal window at a few selected values of the parameters to guarantee a computationally efficient adaptation. The resulting DMD-DEIM reduced dynamical system retains the Hamiltonian structure of the full model, provides good approximations of the solution, and can be solved at a reduced computational cost.
We consider the deformation of a geological structure with non-intersecting faults that can be represented by a layered system of viscoelastic bodies satisfying rate- and state-depending friction conditions along the common interfaces. We derive a mathematical model that contains classical Dieterich- and Ruina-type friction as special cases and accounts for possibly large tangential displacements. Semi-discretization in time by a Newmark scheme leads to a coupled system of non-smooth, convex minimization problems for rate and state to be solved in each time step. Additional spatial discretization by a mortar method and piecewise constant finite elements allows for the decoupling of rate and state by a fixed point iteration and efficient algebraic solution of the rate problem by truncated non-smooth Newton methods. Numerical experiments with a spring slider and a layered multiscale system illustrate the behavior of our model as well as the efficiency and reliability of the numerical solver.
Objects are made of parts, each with distinct geometry, physics, functionality, and affordances. Developing such a distributed, physical, interpretable representation of objects will facilitate intelligent agents to better explore and interact with the world. In this paper, we study physical primitive decomposition---understanding an object through its components, each with physical and geometric attributes. As annotated data for object parts and physics are rare, we propose a novel formulation that learns physical primitives by explaining both an object's appearance and its behaviors in physical events. Our model performs well on block towers and tools in both synthetic and real scenarios; we also demonstrate that visual and physical observations often provide complementary signals. We further present ablation and behavioral studies to better understand our model and contrast it with human performance.