Image generation has recently seen tremendous advances, with diffusion models allowing to synthesize convincing images for a large variety of text prompts. In this article, we propose DiffEdit, a method to take advantage of text-conditioned diffusion models for the task of semantic image editing, where the goal is to edit an image based on a text query. Semantic image editing is an extension of image generation, with the additional constraint that the generated image should be as similar as possible to a given input image. Current editing methods based on diffusion models usually require to provide a mask, making the task much easier by treating it as a conditional inpainting task. In contrast, our main contribution is able to automatically generate a mask highlighting regions of the input image that need to be edited, by contrasting predictions of a diffusion model conditioned on different text prompts. Moreover, we rely on latent inference to preserve content in those regions of interest and show excellent synergies with mask-based diffusion. DiffEdit achieves state-of-the-art editing performance on ImageNet. In addition, we evaluate semantic image editing in more challenging settings, using images from the COCO dataset as well as text-based generated images.
Recent 3D-aware GANs rely on volumetric rendering techniques to disentangle the pose and appearance of objects, de facto generating entire 3D volumes rather than single-view 2D images from a latent code. Complex image editing tasks can be performed in standard 2D-based GANs (e.g., StyleGAN models) as manipulation of latent dimensions. However, to the best of our knowledge, similar properties have only been partially explored for 3D-aware GAN models. This work aims to fill this gap by showing the limitations of existing methods and proposing LatentSwap3D, a model-agnostic approach designed to enable attribute editing in the latent space of pre-trained 3D-aware GANs. We first identify the most relevant dimensions in the latent space of the model controlling the targeted attribute by relying on the feature importance ranking of a random forest classifier. Then, to apply the transformation, we swap the top-K most relevant latent dimensions of the image being edited with an image exhibiting the desired attribute. Despite its simplicity, LatentSwap3D provides remarkable semantic edits in a disentangled manner and outperforms alternative approaches both qualitatively and quantitatively. We demonstrate our semantic edit approach on various 3D-aware generative models such as pi-GAN, GIRAFFE, StyleSDF, MVCGAN, EG3D and VolumeGAN, and on diverse datasets, such as FFHQ, AFHQ, Cats, MetFaces, and CompCars. The project page can be found: \url{//enisimsar.github.io/latentswap3d/}.
In unsupervised domain adaptation (UDA), a model trained on source data (e.g. synthetic) is adapted to target data (e.g. real-world) without access to target annotation. Most previous UDA methods struggle with classes that have a similar visual appearance on the target domain as no ground truth is available to learn the slight appearance differences. To address this problem, we propose a Masked Image Consistency (MIC) module to enhance UDA by learning spatial context relations of the target domain as additional clues for robust visual recognition. MIC enforces the consistency between predictions of masked target images, where random patches are withheld, and pseudo-labels that are generated based on the complete image by an exponential moving average teacher. To minimize the consistency loss, the network has to learn to infer the predictions of the masked regions from their context. Due to its simple and universal concept, MIC can be integrated into various UDA methods across different visual recognition tasks such as image classification, semantic segmentation, and object detection. MIC significantly improves the state-of-the-art performance across the different recognition tasks for synthetic-to-real, day-to-nighttime, and clear-to-adverse-weather UDA. For instance, MIC achieves an unprecedented UDA performance of 75.9 mIoU and 92.8% on GTA-to-Cityscapes and VisDA-2017, respectively, which corresponds to an improvement of +2.1 and +3.0 percent points over the previous state of the art. The implementation is available at //github.com/lhoyer/MIC.
Text-guided diffusion models have shown superior performance in image/video generation and editing. While few explorations have been performed in 3D scenarios. In this paper, we discuss three fundamental and interesting problems on this topic. First, we equip text-guided diffusion models to achieve $\textbf{3D-consistent generation}$. Specifically, we integrate a NeRF-like neural field to generate low-resolution coarse results for a given camera view. Such results can provide 3D priors as condition information for the following diffusion process. During denoising diffusion, we further enhance the 3D consistency by modeling cross-view correspondences with a novel two-stream (corresponding to two different views) asynchronous diffusion process. Second, we study $\textbf{3D local editing}$ and propose a two-step solution that can generate 360$^{\circ}$ manipulated results by editing an object from a single view. Step 1, we propose to perform 2D local editing by blending the predicted noises. Step 2, we conduct a noise-to-text inversion process that maps 2D blended noises into the view-independent text embedding space. Once the corresponding text embedding is obtained, 360$^{\circ}$ images can be generated. Last but not least, we extend our model to perform \textbf{one-shot novel view synthesis} by fine-tuning on a single image, firstly showing the potential of leveraging text guidance for novel view synthesis. Extensive experiments and various applications show the prowess of our 3DDesigner. The project page is available at //3ddesigner-diffusion.github.io/.
We tackle open-world semantic segmentation, which aims at learning to segment arbitrary visual concepts in images, by using only image-text pairs without dense annotations. Existing open-world segmentation methods have shown impressive advances by employing contrastive learning (CL) to learn diverse visual concepts and adapting the learned image-level understanding to the segmentation task. However, these methods based on CL have a discrepancy since it only considers image-text level alignment in training time, while the segmentation task requires region-text level alignment at test time. In this paper, we propose a novel Text-grounded Contrastive Learning (TCL) framework to directly align a text and a region described by the text to address the train-test discrepancy. Our method generates a segmentation mask associated with a given text, extracts grounded image embedding from the masked region, and aligns it with text embedding via TCL. The framework addresses the discrepancy by letting the model learn region-text level alignment instead of image-text level alignment and encourages the model to directly improve the quality of generated segmentation masks. In addition, for a rigorous and fair comparison, we present a unified evaluation protocol with widely used 8 semantic segmentation datasets. TCL achieves state-of-the-art zero-shot segmentation performance with large margins in all datasets. Code is available at //github.com/kakaobrain/tcl.
Diffusion models (DMs) have shown great potential for high-quality image synthesis. However, when it comes to producing images with complex scenes, how to properly describe both image global structures and object details remains a challenging task. In this paper, we present Frido, a Feature Pyramid Diffusion model performing a multi-scale coarse-to-fine denoising process for image synthesis. Our model decomposes an input image into scale-dependent vector quantized features, followed by a coarse-to-fine gating for producing image output. During the above multi-scale representation learning stage, additional input conditions like text, scene graph, or image layout can be further exploited. Thus, Frido can be also applied for conditional or cross-modality image synthesis. We conduct extensive experiments over various unconditioned and conditional image generation tasks, ranging from text-to-image synthesis, layout-to-image, scene-graph-to-image, to label-to-image. More specifically, we achieved state-of-the-art FID scores on five benchmarks, namely layout-to-image on COCO and OpenImages, scene-graph-to-image on COCO and Visual Genome, and label-to-image on COCO. Code is available at //github.com/davidhalladay/Frido.
Classifier-free guided diffusion models have recently been shown to be highly effective at high-resolution image generation, and they have been widely used in large-scale diffusion frameworks including DALLE-2, Stable Diffusion and Imagen. However, a downside of classifier-free guided diffusion models is that they are computationally expensive at inference time since they require evaluating two diffusion models, a class-conditional model and an unconditional model, tens to hundreds of times. To deal with this limitation, we propose an approach to distilling classifier-free guided diffusion models into models that are fast to sample from: Given a pre-trained classifier-free guided model, we first learn a single model to match the output of the combined conditional and unconditional models, and then we progressively distill that model to a diffusion model that requires much fewer sampling steps. For standard diffusion models trained on the pixel-space, our approach is able to generate images visually comparable to that of the original model using as few as 4 sampling steps on ImageNet 64x64 and CIFAR-10, achieving FID/IS scores comparable to that of the original model while being up to 256 times faster to sample from. For diffusion models trained on the latent-space (e.g., Stable Diffusion), our approach is able to generate high-fidelity images using as few as 1 to 4 denoising steps, accelerating inference by at least 10-fold compared to existing methods on ImageNet 256x256 and LAION datasets. We further demonstrate the effectiveness of our approach on text-guided image editing and inpainting, where our distilled model is able to generate high-quality results using as few as 2-4 denoising steps.
Controllable image synthesis with user scribbles has gained huge public interest with the recent advent of text-conditioned latent diffusion models. The user scribbles control the color composition while the text prompt provides control over the overall image semantics. However, we note that prior works in this direction suffer from an intrinsic domain shift problem, wherein the generated outputs often lack details and resemble simplistic representations of the target domain. In this paper, we propose a novel guided image synthesis framework, which addresses this problem by modeling the output image as the solution of a constrained optimization problem. We show that while computing an exact solution to the optimization is infeasible, an approximation of the same can be achieved while just requiring a single pass of the reverse diffusion process. Additionally, we show that by simply defining a cross-attention based correspondence between the input text tokens and the user stroke-painting, the user is also able to control the semantics of different painted regions without requiring any conditional training or finetuning. Human user study results show that the proposed approach outperforms the previous state-of-the-art by over 85.32% on the overall user satisfaction scores. Project page for our paper is available at //1jsingh.github.io/gradop.
Generative Adversarial Networks (GANs) can produce images of surprising complexity and realism, but are generally modeled to sample from a single latent source ignoring the explicit spatial interaction between multiple entities that could be present in a scene. Capturing such complex interactions between different objects in the world, including their relative scaling, spatial layout, occlusion, or viewpoint transformation is a challenging problem. In this work, we propose to model object composition in a GAN framework as a self-consistent composition-decomposition network. Our model is conditioned on the object images from their marginal distributions to generate a realistic image from their joint distribution by explicitly learning the possible interactions. We evaluate our model through qualitative experiments and user evaluations in both the scenarios when either paired or unpaired examples for the individual object images and the joint scenes are given during training. Our results reveal that the learned model captures potential interactions between the two object domains given as input to output new instances of composed scene at test time in a reasonable fashion.
This paper discusses and demonstrates the outcomes from our experimentation on Image Captioning. Image captioning is a much more involved task than image recognition or classification, because of the additional challenge of recognizing the interdependence between the objects/concepts in the image and the creation of a succinct sentential narration. Experiments on several labeled datasets show the accuracy of the model and the fluency of the language it learns solely from image descriptions. As a toy application, we apply image captioning to create video captions, and we advance a few hypotheses on the challenges we encountered.
Automatic image captioning has recently approached human-level performance due to the latest advances in computer vision and natural language understanding. However, most of the current models can only generate plain factual descriptions about the content of a given image. However, for human beings, image caption writing is quite flexible and diverse, where additional language dimensions, such as emotion, humor and language styles, are often incorporated to produce diverse, emotional, or appealing captions. In particular, we are interested in generating sentiment-conveying image descriptions, which has received little attention. The main challenge is how to effectively inject sentiments into the generated captions without altering the semantic matching between the visual content and the generated descriptions. In this work, we propose two different models, which employ different schemes for injecting sentiments into image captions. Compared with the few existing approaches, the proposed models are much simpler and yet more effective. The experimental results show that our model outperform the state-of-the-art models in generating sentimental (i.e., sentiment-bearing) image captions. In addition, we can also easily manipulate the model by assigning different sentiments to the testing image to generate captions with the corresponding sentiments.