Climate change poses one of the most significant challenges to humanity. As a result of these climatic changes, the frequency of weather, climate, and water-related disasters has multiplied fivefold over the past 50 years, resulting in over 2 million deaths and losses exceeding $3.64 trillion USD. Leveraging AI-powered technologies for sustainable development and combating climate change is a promising avenue. Numerous significant publications are dedicated to using AI to improve renewable energy forecasting, enhance waste management, and monitor environmental changes in real time. However, very few research studies focus on making AI itself environmentally sustainable. This oversight regarding the sustainability of AI within the field might be attributed to a mindset gap and the absence of comprehensive energy datasets. In addition, with the ubiquity of edge AI systems and applications, especially on-device learning, there is a pressing need to measure, analyze, and optimize their environmental sustainability, such as energy efficiency. To this end, in this paper, we propose large-scale energy datasets for edge AI, named DeepEn2023, covering a wide range of kernels, state-of-the-art deep neural network models, and popular edge AI applications. We anticipate that DeepEn2023 will improve transparency in sustainability in on-device deep learning across a range of edge AI systems and applications. For more information, including access to the dataset and code, please visit //amai-gsu.github.io/DeepEn2023.
Controllable generation of 3D human motions becomes an important topic as the world embraces digital transformation. Existing works, though making promising progress with the advent of diffusion models, heavily rely on meticulously captured and annotated (e.g., text) high-quality motion corpus, a resource-intensive endeavor in the real world. This motivates our proposed MotionMix, a simple yet effective weakly-supervised diffusion model that leverages both noisy and unannotated motion sequences. Specifically, we separate the denoising objectives of a diffusion model into two stages: obtaining conditional rough motion approximations in the initial $T-T^*$ steps by learning the noisy annotated motions, followed by the unconditional refinement of these preliminary motions during the last $T^*$ steps using unannotated motions. Notably, though learning from two sources of imperfect data, our model does not compromise motion generation quality compared to fully supervised approaches that access gold data. Extensive experiments on several benchmarks demonstrate that our MotionMix, as a versatile framework, consistently achieves state-of-the-art performances on text-to-motion, action-to-motion, and music-to-dance tasks.
Deepfake videos, generated through AI faceswapping techniques, have garnered considerable attention due to their potential for powerful impersonation attacks. While existing research primarily focuses on binary classification to discern between real and fake videos, however determining the specific generation model for a fake video is crucial for forensic investigation. Addressing this gap, this paper investigates the model attribution problem of Deepfake videos from a recently proposed dataset, Deepfakes from Different Models (DFDM), derived from various Autoencoder models. The dataset comprises 6,450 Deepfake videos generated by five distinct models with variations in encoder, decoder, intermediate layer, input resolution, and compression ratio. This study formulates Deepfakes model attribution as a multiclass classification task, proposing a segment of VGG19 as a feature extraction backbone, known for its effectiveness in imagerelated tasks, while integrated a Capsule Network with a Spatio-Temporal attention mechanism. The Capsule module captures intricate hierarchies among features for robust identification of deepfake attributes. Additionally, the video-level fusion technique leverages temporal attention mechanisms to handle concatenated feature vectors, capitalizing on inherent temporal dependencies in deepfake videos. By aggregating insights across frames, our model gains a comprehensive understanding of video content, resulting in more precise predictions. Experimental results on the deepfake benchmark dataset (DFDM) demonstrate the efficacy of our proposed method, achieving up to a 4% improvement in accurately categorizing deepfake videos compared to baseline models while demanding fewer computational resources.
Generative AI models face the challenge of hallucinations that can undermine users' trust in such systems. We approach the problem of conversational information seeking as a two-step process, where relevant passages in a corpus are identified first and then summarized into a final system response. This way we can automatically assess if the answer to the user's question is present in the corpus. Specifically, our proposed method employs a sentence-level classifier to detect if the answer is present, then aggregates these predictions on the passage level, and eventually across the top-ranked passages to arrive at a final answerability estimate. For training and evaluation, we develop a dataset based on the TREC CAsT benchmark that includes answerability labels on the sentence, passage, and ranking levels. We demonstrate that our proposed method represents a strong baseline and outperforms a state-of-the-art LLM on the answerability prediction task.
In the face of rapidly expanding online medical literature, automated systems for aggregating and summarizing information are becoming increasingly crucial for healthcare professionals and patients. Large Language Models (LLMs), with their advanced generative capabilities, have shown promise in various NLP tasks, and their potential in the healthcare domain, particularly for Closed-Book Generative QnA, is significant. However, the performance of these models in domain-specific tasks such as medical Q&A remains largely unexplored. This study aims to fill this gap by comparing the performance of general and medical-specific distilled LMs for medical Q&A. We aim to evaluate the effectiveness of fine-tuning domain-specific LMs and compare the performance of different families of Language Models. The study will address critical questions about these models' reliability, comparative performance, and effectiveness in the context of medical Q&A. The findings will provide valuable insights into the suitability of different LMs for specific applications in the medical domain.
Low-rank compression, a popular model compression technique that produces compact convolutional neural networks (CNNs) with low rankness, has been well-studied in the literature. On the other hand, low-rank training, as an alternative way to train low-rank CNNs from scratch, has been exploited little yet. Unlike low-rank compression, low-rank training does not need pre-trained full-rank models, and the entire training phase is always performed on the low-rank structure, bringing attractive benefits for practical applications. However, the existing low-rank training solutions still face several challenges, such as a considerable accuracy drop and/or still needing to update full-size models during the training. In this paper, we perform a systematic investigation on low-rank CNN training. By identifying the proper low-rank format and performance-improving strategy, we propose ELRT, an efficient low-rank training solution for high-accuracy, high-compactness, low-rank CNN models. Our extensive evaluation results for training various CNNs on different datasets demonstrate the effectiveness of ELRT.
Diffusion models (DMs) have shown great potential for high-quality image synthesis. However, when it comes to producing images with complex scenes, how to properly describe both image global structures and object details remains a challenging task. In this paper, we present Frido, a Feature Pyramid Diffusion model performing a multi-scale coarse-to-fine denoising process for image synthesis. Our model decomposes an input image into scale-dependent vector quantized features, followed by a coarse-to-fine gating for producing image output. During the above multi-scale representation learning stage, additional input conditions like text, scene graph, or image layout can be further exploited. Thus, Frido can be also applied for conditional or cross-modality image synthesis. We conduct extensive experiments over various unconditioned and conditional image generation tasks, ranging from text-to-image synthesis, layout-to-image, scene-graph-to-image, to label-to-image. More specifically, we achieved state-of-the-art FID scores on five benchmarks, namely layout-to-image on COCO and OpenImages, scene-graph-to-image on COCO and Visual Genome, and label-to-image on COCO. Code is available at //github.com/davidhalladay/Frido.
With the rise of powerful pre-trained vision-language models like CLIP, it becomes essential to investigate ways to adapt these models to downstream datasets. A recently proposed method named Context Optimization (CoOp) introduces the concept of prompt learning -- a recent trend in NLP -- to the vision domain for adapting pre-trained vision-language models. Specifically, CoOp turns context words in a prompt into a set of learnable vectors and, with only a few labeled images for learning, can achieve huge improvements over intensively-tuned manual prompts. In our study we identify a critical problem of CoOp: the learned context is not generalizable to wider unseen classes within the same dataset, suggesting that CoOp overfits base classes observed during training. To address the problem, we propose Conditional Context Optimization (CoCoOp), which extends CoOp by further learning a lightweight neural network to generate for each image an input-conditional token (vector). Compared to CoOp's static prompts, our dynamic prompts adapt to each instance and are thus less sensitive to class shift. Extensive experiments show that CoCoOp generalizes much better than CoOp to unseen classes, even showing promising transferability beyond a single dataset; and yields stronger domain generalization performance as well. Code is available at //github.com/KaiyangZhou/CoOp.
Backdoor attack intends to embed hidden backdoor into deep neural networks (DNNs), such that the attacked model performs well on benign samples, whereas its prediction will be maliciously changed if the hidden backdoor is activated by the attacker-defined trigger. Backdoor attack could happen when the training process is not fully controlled by the user, such as training on third-party datasets or adopting third-party models, which poses a new and realistic threat. Although backdoor learning is an emerging and rapidly growing research area, its systematic review, however, remains blank. In this paper, we present the first comprehensive survey of this realm. We summarize and categorize existing backdoor attacks and defenses based on their characteristics, and provide a unified framework for analyzing poisoning-based backdoor attacks. Besides, we also analyze the relation between backdoor attacks and the relevant fields ($i.e.,$ adversarial attack and data poisoning), and summarize the benchmark datasets. Finally, we briefly outline certain future research directions relying upon reviewed works.
With the capability of modeling bidirectional contexts, denoising autoencoding based pretraining like BERT achieves better performance than pretraining approaches based on autoregressive language modeling. However, relying on corrupting the input with masks, BERT neglects dependency between the masked positions and suffers from a pretrain-finetune discrepancy. In light of these pros and cons, we propose XLNet, a generalized autoregressive pretraining method that (1) enables learning bidirectional contexts by maximizing the expected likelihood over all permutations of the factorization order and (2) overcomes the limitations of BERT thanks to its autoregressive formulation. Furthermore, XLNet integrates ideas from Transformer-XL, the state-of-the-art autoregressive model, into pretraining. Empirically, XLNet outperforms BERT on 20 tasks, often by a large margin, and achieves state-of-the-art results on 18 tasks including question answering, natural language inference, sentiment analysis, and document ranking.
ASR (automatic speech recognition) systems like Siri, Alexa, Google Voice or Cortana has become quite popular recently. One of the key techniques enabling the practical use of such systems in people's daily life is deep learning. Though deep learning in computer vision is known to be vulnerable to adversarial perturbations, little is known whether such perturbations are still valid on the practical speech recognition. In this paper, we not only demonstrate such attacks can happen in reality, but also show that the attacks can be systematically conducted. To minimize users' attention, we choose to embed the voice commands into a song, called CommandSong. In this way, the song carrying the command can spread through radio, TV or even any media player installed in the portable devices like smartphones, potentially impacting millions of users in long distance. In particular, we overcome two major challenges: minimizing the revision of a song in the process of embedding commands, and letting the CommandSong spread through the air without losing the voice "command". Our evaluation demonstrates that we can craft random songs to "carry" any commands and the modify is extremely difficult to be noticed. Specially, the physical attack that we play the CommandSongs over the air and record them can success with 94 percentage.