亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Gender imbalance in Wikipedia content is a known challenge which the editor community is actively addressing. The aim of this paper is to provide the Wikipedia community with instruments to estimate the magnitude of the problem for different entity types (also known as classes) in Wikipedia. To this end, we apply class completeness estimation methods based on the gender attribute. Our results show not only which gender for different sub-classes of Person is more prevalent in Wikipedia, but also an idea of how complete the coverage is for difference genders and sub-classes of Person.

相關內容

Synergies between advanced communications, computing and artificial intelligence are unraveling new directions of coordinated operation and resiliency in microgrids. On one hand, coordination among sources is facilitated by distributed, privacy-minded processing at multiple locations, whereas on the other hand, it also creates exogenous data arrival paths for adversaries that can lead to cyber-physical attacks amongst other reliability issues in the communication layer. This long-standing problem necessitates new intrinsic ways of exchanging information between converters through power lines to optimize the system's control performance. Going beyond the existing power and data co-transfer technologies that are limited by efficiency and scalability concerns, this paper proposes neuromorphic learning to implant communicative features using spiking neural networks (SNNs) at each node, which is trained collaboratively in an online manner simply using the power exchanges between the nodes. As opposed to the conventional neuromorphic sensors that operate with spiking signals, we employ an event-driven selective process to collect sparse data for training of SNNs. Finally, its multi-fold effectiveness and reliable performance is validated under simulation conditions with different microgrid topologies and components to establish a new direction in the sense-actuate-compute cycle for power electronic dominated grids and microgrids.

Placement is crucial in the physical design, as it greatly affects power, performance, and area metrics. Recent advancements in analytical methods, such as DREAMPlace, have demonstrated impressive performance in global placement. However, DREAMPlace has some limitations, e.g., may not guarantee legalizable placements under the same settings, leading to fragile and unpredictable results. This paper highlights the main issue as being stuck in local optima, and proposes a hybrid optimization framework to efficiently escape the local optima, by perturbing the placement result iteratively. The proposed framework achieves significant improvements compared to state-of-the-art methods on two popular benchmarks.

The CVAE is one of the most widely-used models in trajectory prediction for AD. It captures the interplay between a driving context and its ground-truth future into a probabilistic latent space and uses it to produce predictions. In this paper, we challenge key components of the CVAE. We leverage recent advances in the space of the VAE, the foundation of the CVAE, which show that a simple change in the sampling procedure can greatly benefit performance. We find that unscented sampling, which draws samples from any learned distribution in a deterministic manner, can naturally be better suited to trajectory prediction than potentially dangerous random sampling. We go further and offer additional improvements including a more structured Gaussian mixture latent space, as well as a novel, potentially more expressive way to do inference with CVAEs. We show wide applicability of our models by evaluating them on the INTERACTION prediction dataset, outperforming the state of the art, as well as at the task of image modeling on the CelebA dataset, outperforming the baseline vanilla CVAE. Code is available at //github.com/boschresearch/cuae-prediction.

Machine learning (ML) is widely used to moderate online content. Despite its scalability relative to human moderation, the use of ML introduces unique challenges to content moderation. One such challenge is predictive multiplicity: multiple competing models for content classification may perform equally well on average, yet assign conflicting predictions to the same content. This multiplicity can result from seemingly innocuous choices during model development, such as random seed selection for parameter initialization. We experimentally demonstrate how content moderation tools can arbitrarily classify samples as toxic, leading to arbitrary restrictions on speech. We discuss these findings in terms of human rights set out by the International Covenant on Civil and Political Rights (ICCPR), namely freedom of expression, non-discrimination, and procedural justice. We analyze (i) the extent of predictive multiplicity among state-of-the-art LLMs used for detecting toxic content; (ii) the disparate impact of this arbitrariness across social groups; and (iii) how model multiplicity compares to unambiguous human classifications. Our findings indicate that the up-scaled algorithmic moderation risks legitimizing an algorithmic leviathan, where an algorithm disproportionately manages human rights. To mitigate such risks, our study underscores the need to identify and increase the transparency of arbitrariness in content moderation applications. Since algorithmic content moderation is being fueled by pressing social concerns, such as disinformation and hate speech, our discussion on harms raises concerns relevant to policy debates. Our findings also contribute to content moderation and intermediary liability laws being discussed and passed in many countries, such as the Digital Services Act in the European Union, the Online Safety Act in the United Kingdom, and the Fake News Bill in Brazil.

Advances in generative models have made it possible for AI-generated text, code, and images to mirror human-generated content in many applications. Watermarking, a technique that aims to embed information in the output of a model to verify its source, is useful for mitigating misuse of such AI-generated content. However, existing watermarking schemes remain surprisingly susceptible to attack. In particular, we show that desirable properties shared by existing LLM watermarking systems such as quality preservation, robustness, and public detection APIs can in turn make these systems vulnerable to various attacks. We rigorously study potential attacks in terms of common watermark design choices, and propose best practices and defenses for mitigation -- establishing a set of practical guidelines for embedding and detection of LLM watermarks.

Bayesian Generative AI (BayesGen-AI) methods are developed and applied to Bayesian computation. BayesGen-AI reconstructs the posterior distribution by directly modeling the parameter of interest as a mapping (a.k.a. deep learner) from a large simulated dataset. This provides a generator that we can evaluate at the observed data and provide draws from the posterior distribution. This method applies to all forms of Bayesian inference including parametric models, likelihood-free models, prediction and maximum expected utility problems. Bayesian computation is then equivalent to high dimensional non-parametric regression. Bayes Gen-AI main advantage is that it is density-free and therefore provides an alternative to Markov Chain Monte Carlo. It has a number of advantages over vanilla generative adversarial networks (GAN) and approximate Bayesian computation (ABC) methods due to the fact that the generator is simpler to learn than a GAN architecture and is more flexible than kernel smoothing implicit in ABC methods. Design of the Network Architecture requires careful selection of features (a.k.a. dimension reduction) and nonlinear architecture for inference. As a generic architecture, we propose a deep quantile neural network and a uniform base distribution at which to evaluate the generator. To illustrate our methodology, we provide two real data examples, the first in traffic flow prediction and the second in building a surrogate for satellite drag data-set. Finally, we conclude with directions for future research.

We present a comprehensive framework for studying and leveraging morphological symmetries in robotic systems. These are intrinsic properties of the robot's morphology, frequently observed in animal biology and robotics, which stem from the replication of kinematic structures and the symmetrical distribution of mass. We illustrate how these symmetries extend to the robot's state space and both proprioceptive and exteroceptive sensor measurements, resulting in the equivariance of the robot's equations of motion and optimal control policies. Thus, we recognize morphological symmetries as a relevant and previously unexplored physics-informed geometric prior, with significant implications for both data-driven and analytical methods used in modeling, control, estimation and design in robotics. For data-driven methods, we demonstrate that morphological symmetries can enhance the sample efficiency and generalization of machine learning models through data augmentation, or by applying equivariant/invariant constraints on the model's architecture. In the context of analytical methods, we employ abstract harmonic analysis to decompose the robot's dynamics into a superposition of lower-dimensional, independent dynamics. We substantiate our claims with both synthetic and real-world experiments conducted on bipedal and quadrupedal robots. Lastly, we introduce the repository MorphoSymm to facilitate the practical use of the theory and applications outlined in this work.

Motivated by the desire to utilize a limited number of configurable optical switches by recent advances in Software Defined Networks (SDNs), we define an online problem which we call the Caching in Matchings problem. This problem has a natural combinatorial structure and therefore may find additional applications in theory and practice. In the Caching in Matchings problem our cache consists of $k$ matchings of connections between servers that form a bipartite graph. To cache a connection we insert it into one of the $k$ matchings possibly evicting at most two other connections from this matching. This problem resembles the problem known as Connection Caching, where we also cache connections but our only restriction is that they form a graph with bounded degree $k$. Our results show a somewhat surprising qualitative separation between the problems: The competitive ratio of any online algorithm for caching in matchings must depend on the size of the graph. Specifically, we give a deterministic $O(nk)$ competitive and randomized $O(n \log k)$ competitive algorithms for caching in matchings, where $n$ is the number of servers and $k$ is the number of matchings. We also show that the competitive ratio of any deterministic algorithm is $\Omega(\max(\frac{n}{k},k))$ and of any randomized algorithm is $\Omega(\log \frac{n}{k^2 \log k} \cdot \log k)$. In particular, the lower bound for randomized algorithms is $\Omega(\log n)$ regardless of $k$, and can be as high as $\Omega(\log^2 n)$ if $k=n^{1/3}$, for example. We also show that if we allow the algorithm to use at least $2k-1$ matchings compared to $k$ used by the optimum then we match the competitive ratios of connection catching which are independent of $n$. Interestingly, we also show that even a single extra matching for the algorithm allows to get substantially better bounds.

This manuscript portrays optimization as a process. In many practical applications the environment is so complex that it is infeasible to lay out a comprehensive theoretical model and use classical algorithmic theory and mathematical optimization. It is necessary as well as beneficial to take a robust approach, by applying an optimization method that learns as one goes along, learning from experience as more aspects of the problem are observed. This view of optimization as a process has become prominent in varied fields and has led to some spectacular success in modeling and systems that are now part of our daily lives.

Sequential recommendation aims to leverage users' historical behaviors to predict their next interaction. Existing works have not yet addressed two main challenges in sequential recommendation. First, user behaviors in their rich historical sequences are often implicit and noisy preference signals, they cannot sufficiently reflect users' actual preferences. In addition, users' dynamic preferences often change rapidly over time, and hence it is difficult to capture user patterns in their historical sequences. In this work, we propose a graph neural network model called SURGE (short for SeqUential Recommendation with Graph neural nEtworks) to address these two issues. Specifically, SURGE integrates different types of preferences in long-term user behaviors into clusters in the graph by re-constructing loose item sequences into tight item-item interest graphs based on metric learning. This helps explicitly distinguish users' core interests, by forming dense clusters in the interest graph. Then, we perform cluster-aware and query-aware graph convolutional propagation and graph pooling on the constructed graph. It dynamically fuses and extracts users' current activated core interests from noisy user behavior sequences. We conduct extensive experiments on both public and proprietary industrial datasets. Experimental results demonstrate significant performance gains of our proposed method compared to state-of-the-art methods. Further studies on sequence length confirm that our method can model long behavioral sequences effectively and efficiently.

北京阿比特科技有限公司