亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Creating high-quality scientific figures can be time-consuming and challenging, even though sketching ideas on paper is relatively easy. Furthermore, recreating existing figures that are not stored in formats preserving semantic information is equally complex. To tackle this problem, we introduce DeTikZify, a novel multimodal language model that automatically synthesizes scientific figures as semantics-preserving TikZ graphics programs based on sketches and existing figures. To achieve this, we create three new datasets: DaTikZv2, the largest TikZ dataset to date, containing over 360k human-created TikZ graphics; SketchFig, a dataset that pairs hand-drawn sketches with their corresponding scientific figures; and MetaFig, a collection of diverse scientific figures and associated metadata. We train DeTikZify on MetaFig and DaTikZv2, along with synthetically generated sketches learned from SketchFig. We also introduce an MCTS-based inference algorithm that enables DeTikZify to iteratively refine its outputs without the need for additional training. Through both automatic and human evaluation, we demonstrate that DeTikZify outperforms commercial Claude 3 and GPT-4V in synthesizing TikZ programs, with the MCTS algorithm effectively boosting its performance. We make our code, models, and datasets publicly available.

相關內容

數據集,又稱為資料集、數據集合或資料集合,是一種由數據所組成的集合。
 Data set(或dataset)是一個數據的集合,通常以表格形式出現。每一列代表一個特定變量。每一行都對應于某一成員的數據集的問題。它列出的價值觀為每一個變量,如身高和體重的一個物體或價值的隨機數。每個數值被稱為數據資料。對應于行數,該數據集的數據可能包括一個或多個成員。

This paper proposes dialogue as a method for evaluating generative AI tools for culturally-situated creative practice, that recognizes the socially situated nature of art. Drawing on sociologist Howard Becker's concept of Art Worlds, this method expands the scope of traditional AI and creativity evaluations beyond benchmarks, user studies with crowd-workers, or focus groups conducted with artists. Our method involves two mutually informed dialogues: 1) 'dialogues with art worlds' placing artists in conversation with experts such as art historians, curators, and archivists, and 2)'dialogues with the machine,' facilitated through structured artist- and critic-led experimentation with state-of-the-art generative AI tools. We demonstrate the value of this method through a case study with artists and experts steeped in non-western art worlds, specifically the Persian Gulf. We trace how these dialogues help create culturally rich and situated forms of evaluation for representational possibilities of generative AI that mimic the reception of generative artwork in the broader art ecosystem. Putting artists in conversation with commentators also allow artists to shift their use of the tools to respond to their cultural and creative context. Our study can provide generative AI researchers an understanding of the complex dynamics of technology, human creativity and the socio-politics of art worlds, to build more inclusive machines for diverse art worlds.

Recent advancements in language modeling have enabled the translation of natural language into code, and the use of execution feedback to improve code generation. However, these methods often rely heavily on pre-existing test cases, which may not always be available or comprehensive. In this work, we propose a novel approach that concurrently trains a code generation model and a test generation model, utilizing execution feedback to refine and enhance the performance of both. We introduce two strategies for test and code data augmentation and a new scoring function for code and test ranking. We experiment on the APPS dataset and demonstrate that our approach can effectively generate and augment test cases, filter and synthesize correct code solutions, and rank the quality of generated code and tests. The results demonstrate that our models, when iteratively trained with an increasing number of test cases and code solutions, outperform those trained on the original dataset.

This paper addresses a challenging question: How can we efficiently create high-quality, wide-scope 3D scenes from a single arbitrary image? Existing methods face several constraints, such as requiring multi-view data, time-consuming per-scene optimization, low visual quality in backgrounds, and distorted reconstructions in unseen areas. We propose a novel pipeline to overcome these limitations. Specifically, we introduce a large-scale reconstruction model that uses latents from a video diffusion model to predict 3D Gaussian Splattings for the scenes in a feed-forward manner. The video diffusion model is designed to create videos precisely following specified camera trajectories, allowing it to generate compressed video latents that contain multi-view information while maintaining 3D consistency. We train the 3D reconstruction model to operate on the video latent space with a progressive training strategy, enabling the efficient generation of high-quality, wide-scope, and generic 3D scenes. Extensive evaluations across various datasets demonstrate that our model significantly outperforms existing methods for single-view 3D scene generation, particularly with out-of-domain images. For the first time, we demonstrate that a 3D reconstruction model can be effectively built upon the latent space of a diffusion model to realize efficient 3D scene generation.

Fog computing brings about a transformative shift in data management, presenting unprecedented opportunities for enhanced performance and reduced latency. However, one of the key aspects of fog computing revolves around ensuring efficient power and reliability management. To address this challenge, we have introduced a novel model that proposes a non-cooperative game theory-based strategy to strike a balance between power consumption and reliability in decision-making processes. Our proposed model capitalizes on the Cold Primary/Backup strategy (CPB) to guarantee reliability target by re-executing tasks to different nodes when a fault occurs, while also leveraging Dynamic Voltage and Frequency Scaling (DVFS) to reduce power consumption during task execution and maximizing overall efficiency. Non-cooperative game theory plays a pivotal role in our model, as it facilitates the development of strategies and solutions that uphold reliability while reducing power consumption. By treating the trade-off between power and reliability as a non-cooperative game, our proposed method yields significant energy savings, with up to a 35% reduction in energy consumption, 41% decrease in wait time, and 31% shorter completion time compared to state-of-the-art approaches. Our findings underscore the value of game theory in optimizing power and reliability within fog computing environments, demonstrating its potential for driving substantial improvements

Literature reviews are a critical component of formulating and justifying new research, but are a manual and often time-consuming process. This research introduces a novel, generalizable approach to literature analysis called CEKER which uses a three-step process to streamline the collection of literature, the extraction of key insights, and the summarized analysis of key trends and gaps. Leveraging Large Language Models (LLMs), this methodology represents a significant shift from traditional manual literature reviews, offering a scalable, flexible, and repeatable approach that can be applied across diverse research domains. A case study on unikernel security illustrates CEKER's ability to generate novel insights validated against previous manual methods. CEKER's analysis highlighted reduced attack surface as the most prominent theme. Key security gaps included the absence of Address Space Layout Randomization, missing debugging tools, and limited entropy generation, all of which represent important challenges to unikernel security. The study also revealed a reliance on hypervisors as a potential attack vector and emphasized the need for dynamic security adjustments to address real-time threats.

Inconsistency issue is one crucial challenge for the performance of extended Kalman filter (EKF) based methods for state estimation problems, which is mainly affected by the discrepancy of observability between the EKF model and the underlying dynamic system. In this work, some sufficient and necessary conditions for observability maintenance are first proved. We find that under certain conditions, an EKF can naturally maintain correct observability if the corresponding linearization makes unobservable subspace independent of the state values. Based on this theoretical finding, a novel affine EKF (Aff-EKF) framework is proposed to overcome the inconsistency of standard EKF (Std-EKF) by affine transformations, which not only naturally satisfies the observability constraint but also has a clear design procedure. The advantages of our Aff-EKF framework over some commonly used methods are demonstrated through mathematical analyses. The effectiveness of our proposed method is demonstrated on three simultaneous localization and mapping (SLAM) applications with different types of features, typical point features, point features on a horizontal plane and plane features. Specifically, following the proposed procedure, the naturally consistent Aff-EKFs can be explicitly derived for these problems. The consistency improvement of these Aff-EKFs are validated by Monte Carlo simulations.

This paper shows that dimensionality reduction methods such as UMAP and t-SNE, can be approximately recast as MAP inference methods corresponding to a model introduced in ProbDR, that describes the graph Laplacian (an estimate for the precision/inverse covariance) matrix using a Wishart distribution, with a mean given by a non-linear covariance function evaluated on the latents. This interpretation offers deeper theoretical and semantic insights into such algorithms, by showing that variances corresponding to these covariances are low (and misspecified), and forging a connection to Gaussian process latent variable models by showing that well-known kernels can be used to describe covariances implied by graph Laplacians. We also introduce tools with which similar dimensionality reduction methods can be studied, and pose two areas of research arising from these interpretations.

In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.

The problem of answering questions using knowledge from pre-trained language models (LMs) and knowledge graphs (KGs) presents two challenges: given a QA context (question and answer choice), methods need to (i) identify relevant knowledge from large KGs, and (ii) perform joint reasoning over the QA context and KG. In this work, we propose a new model, QA-GNN, which addresses the above challenges through two key innovations: (i) relevance scoring, where we use LMs to estimate the importance of KG nodes relative to the given QA context, and (ii) joint reasoning, where we connect the QA context and KG to form a joint graph, and mutually update their representations through graph neural networks. We evaluate QA-GNN on the CommonsenseQA and OpenBookQA datasets, and show its improvement over existing LM and LM+KG models, as well as its capability to perform interpretable and structured reasoning, e.g., correctly handling negation in questions.

In order to answer natural language questions over knowledge graphs, most processing pipelines involve entity and relation linking. Traditionally, entity linking and relation linking has been performed either as dependent sequential tasks or independent parallel tasks. In this paper, we propose a framework called "EARL", which performs entity linking and relation linking as a joint single task. EARL uses a graph connection based solution to the problem. We model the linking task as an instance of the Generalised Travelling Salesman Problem (GTSP) and use GTSP approximate algorithm solutions. We later develop EARL which uses a pair-wise graph-distance based solution to the problem.The system determines the best semantic connection between all keywords of the question by referring to a knowledge graph. This is achieved by exploiting the "connection density" between entity candidates and relation candidates. The "connection density" based solution performs at par with the approximate GTSP solution.We have empirically evaluated the framework on a dataset with 5000 questions. Our system surpasses state-of-the-art scores for entity linking task by reporting an accuracy of 0.65 to 0.40 from the next best entity linker.

北京阿比特科技有限公司