亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper we address how complex social communities emerge from local decisions by individuals with limited attention and knowledge. This problem is critical; if we understand community formation mechanisms, it may be possible to intervene to improve social welfare. We propose an interpretable, novel model for attributed community formation driven by resource-bounded individuals' strategic, selfish behavior. In our stylized model, attributed individuals act strategically in two dimensions: attribute and network structure. Agents are endowed with limited attention, and communication costs limit the number of active connections. In each time step, each agent proposes a new friendship. Agents then accept proposals, decline proposals, or remove friends, consistent with their strategy to maximize payoff. We identify criteria (number of stable triads) for convergence to some community structure and prove that our community formation model converges to a stable network. Ablations justify the ecological validity of our model and show that each aspect of the model is essential. Our empirical results on a physical world microfinance community demonstrate excellent model fits compared to baseline models.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · Agent · 數據分析 · INTERACT · Extensibility ·
2024 年 2 月 12 日

In this paper, we introduce InfiAgent-DABench, the first benchmark specifically designed to evaluate LLM-based agents on data analysis tasks. These tasks require agents to end-to-end solving complex tasks by interacting with an execution environment. This benchmark contains DAEval, a dataset consisting of 257 data analysis questions derived from 52 CSV files, and an agent framework which incorporates LLMs to serve as data analysis agents for both serving and evaluation. Since data analysis questions are often open-ended and hard to evaluate without human supervision, we adopt a format-prompting technique to convert each question into a closed-form format so that they can be automatically evaluated. Our extensive benchmarking of 34 LLMs uncovers the current challenges encountered in data analysis tasks. In addition, building on top of our agent framework, we develop a specialized agent, DAAgent, which surpasses GPT-3.5 by 3.9% on DABench. Evaluation datasets and toolkits for InfiAgent-DABench are released at //github.com/InfiAgent/InfiAgent .

In today's online advertising markets, it is common for advertisers to set long-term budgets. Correspondingly, advertising platforms adopt budget control methods to ensure that advertisers' payments lie within their budgets. Most budget control methods rely on the value distributions of advertisers. However, due to the complex advertising landscape and potential privacy concerns, the platform hardly learns advertisers' true priors. Thus, it is crucial to understand how budget control auction mechanisms perform under unassured priors. This work answers this problem from multiple aspects. We consider the unassured prior game among the seller and all buyers induced by different mechanisms in the stochastic model. We restrict the parameterized mechanisms to satisfy the budget-extracting condition, which maximizes the seller's revenue by extracting buyers' budgets as effectively as possible. Our main result shows that the Bayesian revenue-optimal mechanism and the budget-extracting bid-discount first-price mechanism yield the same set of Nash equilibrium outcomes in the unassured prior game. This implies that simple mechanisms can be as robust as the optimal mechanism under unassured priors in the budget-constrained setting. In the symmetric case, we further show that all these five (budget-extracting) mechanisms share the same set of possible outcomes. We further dig into the structural properties of these mechanisms. We characterize sufficient and necessary conditions on the budget-extracting parameter tuple for bid-discount/pacing first-price auctions. Meanwhile, when buyers do not take strategic behaviors, we exploit the dominance relationships of these mechanisms by revealing their intrinsic structures.

This paper introduces FedSecurity, an end-to-end benchmark designed to simulate adversarial attacks and corresponding defense mechanisms in Federated Learning (FL). FedSecurity comprises two pivotal components: FedAttacker, which facilitates the simulation of a variety of attacks during FL training, and FedDefender, which implements defensive mechanisms to counteract these attacks. As an open-source library, FedSecurity enhances its usability compared to from-scratch implementations that focus on specific attack/defense scenarios based on the following features: i) It offers extensive customization options to accommodate a broad range of machine learning models (e.g., Logistic Regression, ResNet, and GAN) and FL optimizers (e.g., FedAVG, FedOPT, and FedNOVA); ii) it enables exploring the variability in the effectiveness of attacks and defenses across different datasets and models; and iii) it supports flexible configuration and customization through a configuration file and some provided APIs. We further demonstrate FedSecurity's utility and adaptability through federated training of Large Language Models (LLMs), showcasing its potential to impact a wide range of complex applications.

The math abilities of large language models can represent their abstract reasoning ability. In this paper, we introduce and open-source our math reasoning LLMs InternLM-Math which is continue pre-trained from InternLM2. We unify chain-of-thought reasoning, reward modeling, formal reasoning, data augmentation, and code interpreter in a unified seq2seq format and supervise our model to be a versatile math reasoner, verifier, prover, and augmenter. These abilities can be used to develop the next math LLMs or self-iteration. InternLM-Math obtains open-sourced state-of-the-art performance under the setting of in-context learning, supervised fine-tuning, and code-assisted reasoning in various informal and formal benchmarks including GSM8K, MATH, Hungary math exam, MathBench-ZH, and MiniF2F. Our pre-trained model achieves 30.3 on the MiniF2F test set without fine-tuning. We further explore how to use LEAN to solve math problems and study its performance under the setting of multi-task learning which shows the possibility of using LEAN as a unified platform for solving and proving in math. Our models, codes, and data are released at \url{//github.com/InternLM/InternLM-Math}.

Prompt design and engineering has rapidly become essential for maximizing the potential of large language models. In this paper, we introduce core concepts, advanced techniques like Chain-of-Thought and Reflection, and the principles behind building LLM-based agents. Finally, we provide a survey of tools for prompt engineers.

This paper introduces DiffTOP, which utilizes Differentiable Trajectory OPtimization as the policy representation to generate actions for deep reinforcement and imitation learning. Trajectory optimization is a powerful and widely used algorithm in control, parameterized by a cost and a dynamics function. The key to our approach is to leverage the recent progress in differentiable trajectory optimization, which enables computing the gradients of the loss with respect to the parameters of trajectory optimization. As a result, the cost and dynamics functions of trajectory optimization can be learned end-to-end. DiffTOP addresses the ``objective mismatch'' issue of prior model-based RL algorithms, as the dynamics model in DiffTOP is learned to directly maximize task performance by differentiating the policy gradient loss through the trajectory optimization process. We further benchmark DiffTOP for imitation learning on standard robotic manipulation task suites with high-dimensional sensory observations and compare our method to feed-forward policy classes as well as Energy-Based Models (EBM) and Diffusion. Across 15 model-based RL tasks and 13 imitation learning tasks with high-dimensional image and point cloud inputs, DiffTOP outperforms prior state-of-the-art methods in both domains.

This article presents the affordances that Generative Artificial Intelligence can have in disinformation context, one of the major threats to our digitalized society. We present a research framework to generate customized agent-based social networks for disinformation simulations that would enable understanding and evaluation of the phenomena whilst discussing open challenges.

Large knowledge graphs often grow to store temporal facts that model the dynamic relations or interactions of entities along the timeline. Since such temporal knowledge graphs often suffer from incompleteness, it is important to develop time-aware representation learning models that help to infer the missing temporal facts. While the temporal facts are typically evolving, it is observed that many facts often show a repeated pattern along the timeline, such as economic crises and diplomatic activities. This observation indicates that a model could potentially learn much from the known facts appeared in history. To this end, we propose a new representation learning model for temporal knowledge graphs, namely CyGNet, based on a novel timeaware copy-generation mechanism. CyGNet is not only able to predict future facts from the whole entity vocabulary, but also capable of identifying facts with repetition and accordingly predicting such future facts with reference to the known facts in the past. We evaluate the proposed method on the knowledge graph completion task using five benchmark datasets. Extensive experiments demonstrate the effectiveness of CyGNet for predicting future facts with repetition as well as de novo fact prediction.

As data are increasingly being stored in different silos and societies becoming more aware of data privacy issues, the traditional centralized training of artificial intelligence (AI) models is facing efficiency and privacy challenges. Recently, federated learning (FL) has emerged as an alternative solution and continue to thrive in this new reality. Existing FL protocol design has been shown to be vulnerable to adversaries within or outside of the system, compromising data privacy and system robustness. Besides training powerful global models, it is of paramount importance to design FL systems that have privacy guarantees and are resistant to different types of adversaries. In this paper, we conduct the first comprehensive survey on this topic. Through a concise introduction to the concept of FL, and a unique taxonomy covering: 1) threat models; 2) poisoning attacks and defenses against robustness; 3) inference attacks and defenses against privacy, we provide an accessible review of this important topic. We highlight the intuitions, key techniques as well as fundamental assumptions adopted by various attacks and defenses. Finally, we discuss promising future research directions towards robust and privacy-preserving federated learning.

In this paper we address issues with image retrieval benchmarking on standard and popular Oxford 5k and Paris 6k datasets. In particular, annotation errors, the size of the dataset, and the level of challenge are addressed: new annotation for both datasets is created with an extra attention to the reliability of the ground truth. Three new protocols of varying difficulty are introduced. The protocols allow fair comparison between different methods, including those using a dataset pre-processing stage. For each dataset, 15 new challenging queries are introduced. Finally, a new set of 1M hard, semi-automatically cleaned distractors is selected. An extensive comparison of the state-of-the-art methods is performed on the new benchmark. Different types of methods are evaluated, ranging from local-feature-based to modern CNN based methods. The best results are achieved by taking the best of the two worlds. Most importantly, image retrieval appears far from being solved.

北京阿比特科技有限公司