Few-shot learning is a challenging problem since only a few examples are provided to recognize a new class. Several recent studies exploit additional semantic information, e.g. text embeddings of class names, to address the issue of rare samples through combining semantic prototypes with visual prototypes. However, these methods still suffer from the spurious visual features learned from the rare support samples, resulting in limited benefits. In this paper, we propose a novel Semantic Prompt (SP) approach for few-shot learning. Instead of the naive exploitation of semantic information for remedying classifiers, we explore leveraging semantic information as prompts to tune the visual feature extraction network adaptively. Specifically, we design two complementary mechanisms to insert semantic prompts into the feature extractor: one is to enable the interaction between semantic prompts and patch embeddings along the spatial dimension via self-attention, another is to supplement visual features with the transformed semantic prompts along the channel dimension. By combining these two mechanisms, the feature extractor presents a better ability to attend to the class-specific features and obtains more generalized image representations with merely a few support samples. Through extensive experiments on four datasets, the proposed approach achieves promising results, improving the 1-shot learning accuracy by 3.67% on average.
Despite the remarkable success of convolutional neural networks in various computer vision tasks, recognizing indoor scenes still presents a significant challenge due to their complex composition. Consequently, effectively leveraging semantic information in the scene has been a key issue in advancing indoor scene recognition. Unfortunately, the accuracy of semantic segmentation has limited the effectiveness of existing approaches for leveraging semantic information. As a result, many of these approaches remain at the stage of auxiliary labeling or co-occurrence statistics, with few exploring the contextual relationships between the semantic elements directly within the scene. In this paper, we propose the Semantic Region Relationship Model (SRRM), which starts directly from the semantic information inside the scene. Specifically, SRRM adopts an adaptive and efficient approach to mitigate the negative impact of semantic ambiguity and then models the semantic region relationship to perform scene recognition. Additionally, to more comprehensively exploit the information contained in the scene, we combine the proposed SRRM with the PlacesCNN module to create the Combined Semantic Region Relation Model (CSRRM), and propose a novel information combining approach to effectively explore the complementary contents between them. CSRRM significantly outperforms the SOTA methods on the MIT Indoor 67, reduced Places365 dataset, and SUN RGB-D without retraining. The code is available at: //github.com/ChuanxinSong/SRRM
Few-shot segmentation (FSS) aims to segment unseen classes given only a few annotated samples. Encouraging progress has been made for FSS by leveraging semantic features learned from base classes with sufficient training samples to represent novel classes. The correlation-based methods lack the ability to consider interaction of the two subspace matching scores due to the inherent nature of the real-valued 2D convolutions. In this paper, we introduce a quaternion perspective on correlation learning and propose a novel Quaternion-valued Correlation Learning Network (QCLNet), with the aim to alleviate the computational burden of high-dimensional correlation tensor and explore internal latent interaction between query and support images by leveraging operations defined by the established quaternion algebra. Specifically, our QCLNet is formulated as a hyper-complex valued network and represents correlation tensors in the quaternion domain, which uses quaternion-valued convolution to explore the external relations of query subspace when considering the hidden relationship of the support sub-dimension in the quaternion space. Extensive experiments on the PASCAL-5i and COCO-20i datasets demonstrate that our method outperforms the existing state-of-the-art methods effectively. Our code is available at //github.com/zwzheng98/QCLNet
Contrastive learning constitutes an emerging branch of self-supervised learning that leverages large amounts of unlabeled data, by learning a latent space, where pairs of different views of the same sample are associated. In this paper, we propose musical source association as a pair generation strategy in the context of contrastive music representation learning. To this end, we modify COLA, a widely used contrastive learning audio framework, to learn to associate a song excerpt with a stochastically selected and automatically extracted vocal or instrumental source. We further introduce a novel modification to the contrastive loss to incorporate information about the existence or absence of specific sources. Our experimental evaluation in three different downstream tasks (music auto-tagging, instrument classification and music genre classification) using the publicly available Magna-Tag-A-Tune (MTAT) as a source dataset yields competitive results to existing literature methods, as well as faster network convergence. The results also show that this pre-training method can be steered towards specific features, according to the selected musical source, while also being dependent on the quality of the separated sources.
Learning from limited data is challenging because data scarcity leads to a poor generalization of the trained model. A classical global pooled representation will probably lose useful local information. Many few-shot learning methods have recently addressed this challenge using deep descriptors and learning a pixel-level metric. However, using deep descriptors as feature representations may lose image contextual information. Moreover, most of these methods independently address each class in the support set, which cannot sufficiently use discriminative information and task-specific embeddings. In this paper, we propose a novel transformer-based neural network architecture called sparse spatial transformers (SSFormers), which finds task-relevant features and suppresses task-irrelevant features. Particularly, we first divide each input image into several image patches of different sizes to obtain dense local features. These features retain contextual information while expressing local information. Then, a sparse spatial transformer layer is proposed to find spatial correspondence between the query image and the full support set to select task-relevant image patches and suppress task-irrelevant image patches. Finally, we propose using an image patch-matching module to calculate the distance between dense local representations, thus determining which category the query image belongs to in the support set. Extensive experiments on popular few-shot learning benchmarks demonstrate the superiority of our method over state-of-the-art methods. Our source code is available at \url{//github.com/chenhaoxing/ssformers}.
Speech Emotion Recognition (SER) is to recognize human emotions in a natural verbal interaction scenario with machines, which is considered as a challenging problem due to the ambiguous human emotions. Despite the recent progress in SER, state-of-the-art models struggle to achieve a satisfactory performance. We propose a self-attention based method with combined use of label-adaptive mixup and center loss. By adapting label probabilities in mixup and fitting center loss to the mixup training scheme, our proposed method achieves a superior performance to the state-of-the-art methods.
We present prompt distribution learning for effectively adapting a pre-trained vision-language model to address downstream recognition tasks. Our method not only learns low-bias prompts from a few samples but also captures the distribution of diverse prompts to handle the varying visual representations. In this way, we provide high-quality task-related content for facilitating recognition. This prompt distribution learning is realized by an efficient approach that learns the output embeddings of prompts instead of the input embeddings. Thus, we can employ a Gaussian distribution to model them effectively and derive a surrogate loss for efficient training. Extensive experiments on 12 datasets demonstrate that our method consistently and significantly outperforms existing methods. For example, with 1 sample per category, it relatively improves the average result by 9.1% compared to human-crafted prompts.
Existing few-shot learning (FSL) methods assume that there exist sufficient training samples from source classes for knowledge transfer to target classes with few training samples. However, this assumption is often invalid, especially when it comes to fine-grained recognition. In this work, we define a new FSL setting termed few-shot fewshot learning (FSFSL), under which both the source and target classes have limited training samples. To overcome the source class data scarcity problem, a natural option is to crawl images from the web with class names as search keywords. However, the crawled images are inevitably corrupted by large amount of noise (irrelevant images) and thus may harm the performance. To address this problem, we propose a graph convolutional network (GCN)-based label denoising (LDN) method to remove the irrelevant images. Further, with the cleaned web images as well as the original clean training images, we propose a GCN-based FSL method. For both the LDN and FSL tasks, a novel adaptive aggregation GCN (AdarGCN) model is proposed, which differs from existing GCN models in that adaptive aggregation is performed based on a multi-head multi-level aggregation module. With AdarGCN, how much and how far information carried by each graph node is propagated in the graph structure can be determined automatically, therefore alleviating the effects of both noisy and outlying training samples. Extensive experiments show the superior performance of our AdarGCN under both the new FSFSL and the conventional FSL settings.
As a crucial component in task-oriented dialog systems, the Natural Language Generation (NLG) module converts a dialog act represented in a semantic form into a response in natural language. The success of traditional template-based or statistical models typically relies on heavily annotated data, which is infeasible for new domains. Therefore, it is pivotal for an NLG system to generalize well with limited labelled data in real applications. To this end, we present FewShotWoz, the first NLG benchmark to simulate the few-shot learning setting in task-oriented dialog systems. Further, we develop the SC-GPT model. It is pre-trained on a large set of annotated NLG corpus to acquire the controllable generation ability, and fine-tuned with only a few domain-specific labels to adapt to new domains. Experiments on FewShotWoz and the large Multi-Domain-WOZ datasets show that the proposed SC-GPT significantly outperforms existing methods, measured by various automatic metrics and human evaluations.
We present a new method to learn video representations from large-scale unlabeled video data. Ideally, this representation will be generic and transferable, directly usable for new tasks such as action recognition and zero or few-shot learning. We formulate unsupervised representation learning as a multi-modal, multi-task learning problem, where the representations are shared across different modalities via distillation. Further, we introduce the concept of loss function evolution by using an evolutionary search algorithm to automatically find optimal combination of loss functions capturing many (self-supervised) tasks and modalities. Thirdly, we propose an unsupervised representation evaluation metric using distribution matching to a large unlabeled dataset as a prior constraint, based on Zipf's law. This unsupervised constraint, which is not guided by any labeling, produces similar results to weakly-supervised, task-specific ones. The proposed unsupervised representation learning results in a single RGB network and outperforms previous methods. Notably, it is also more effective than several label-based methods (e.g., ImageNet), with the exception of large, fully labeled video datasets.
Few-shot learning aims to learn novel categories from very few samples given some base categories with sufficient training samples. The main challenge of this task is the novel categories are prone to dominated by color, texture, shape of the object or background context (namely specificity), which are distinct for the given few training samples but not common for the corresponding categories (see Figure 1). Fortunately, we find that transferring information of the correlated based categories can help learn the novel concepts and thus avoid the novel concept being dominated by the specificity. Besides, incorporating semantic correlations among different categories can effectively regularize this information transfer. In this work, we represent the semantic correlations in the form of structured knowledge graph and integrate this graph into deep neural networks to promote few-shot learning by a novel Knowledge Graph Transfer Network (KGTN). Specifically, by initializing each node with the classifier weight of the corresponding category, a propagation mechanism is learned to adaptively propagate node message through the graph to explore node interaction and transfer classifier information of the base categories to those of the novel ones. Extensive experiments on the ImageNet dataset show significant performance improvement compared with current leading competitors. Furthermore, we construct an ImageNet-6K dataset that covers larger scale categories, i.e, 6,000 categories, and experiments on this dataset further demonstrate the effectiveness of our proposed model.