Effective recommendation systems rely on capturing user preferences, often requiring incorporating numerous features such as universally unique identifiers (UUIDs) of entities. However, the exceptionally high cardinality of UUIDs poses a significant challenge in terms of model degradation and increased model size due to sparsity. This paper presents two innovative techniques to address the challenge of high cardinality in recommendation systems. Specifically, we propose a bag-of-words approach, combined with layer sharing, to substantially decrease the model size while improving performance. Our techniques were evaluated through offline and online experiments on Uber use cases, resulting in promising results demonstrating our approach's effectiveness in optimizing recommendation systems and enhancing their overall performance.
Understanding a surgical scene is crucial for computer-assisted surgery systems to provide any intelligent assistance functionality. One way of achieving this scene understanding is via scene segmentation, where every pixel of a frame is classified and therefore identifies the visible structures and tissues. Progress on fully segmenting surgical scenes has been made using machine learning. However, such models require large amounts of annotated training data, containing examples of all relevant object classes. Such fully annotated datasets are hard to create, as every pixel in a frame needs to be annotated by medical experts and, therefore, are rarely available. In this work, we propose a method to combine multiple partially annotated datasets, which provide complementary annotations, into one model, enabling better scene segmentation and the use of multiple readily available datasets. Our method aims to combine available data with complementary labels by leveraging mutual exclusive properties to maximize information. Specifically, we propose to use positive annotations of other classes as negative samples and to exclude background pixels of binary annotations, as we cannot tell if they contain a class not annotated but predicted by the model. We evaluate our method by training a DeepLabV3 on the publicly available Dresden Surgical Anatomy Dataset, which provides multiple subsets of binary segmented anatomical structures. Our approach successfully combines 6 classes into one model, increasing the overall Dice Score by 4.4% compared to an ensemble of models trained on the classes individually. By including information on multiple classes, we were able to reduce confusion between stomach and colon by 24%. Our results demonstrate the feasibility of training a model on multiple datasets. This paves the way for future work further alleviating the need for one large, fully segmented datasets.
This paper investigates extremal quantiles under two-way cluster dependence. We demonstrate that the limiting distribution of the unconditional intermediate order quantiles in the tails converges to a Gaussian distribution. This is remarkable as two-way cluster dependence entails potential non-Gaussianity in general, but extremal quantiles do not suffer from this issue. Building upon this result, we extend our analysis to extremal quantile regressions of intermediate order.
We consider the statistical linear inverse problem of making inference on an unknown source function in an elliptic partial differential equation from noisy observations of its solution. We employ nonparametric Bayesian procedures based on Gaussian priors, leading to convenient conjugate formulae for posterior inference. We review recent results providing theoretical guarantees on the quality of the resulting posterior-based estimation and uncertainty quantification, and we discuss the application of the theory to the important classes of Gaussian series priors defined on the Dirichlet-Laplacian eigenbasis and Mat\'ern process priors. We provide an implementation of posterior inference for both classes of priors, and investigate its performance in a numerical simulation study.
We analyze call center data on properties such as agent heterogeneity, customer patience and breaks. Then we compare simulation models that are different in the ways these properties are modeled. We classify them according to the extend in which they approach the actual service level and average waiting times. We obtain a theoretical understanding on how to distinguish between the model error and other aspects such as random noise. We conclude that modeling explicitly breaks and agent heterogeneity is crucial for obtaining a precise model.
We propose and analyse boundary-preserving schemes for the strong approximations of some scalar SDEs with non-globally Lipschitz drift and diffusion coefficients whose state-space is bounded. The schemes consists of a Lamperti transform followed by a Lie--Trotter splitting. We prove $L^{p}(\Omega)$-convergence of order $1$, for every $p \geq 1$, of the schemes and exploit the Lamperti transform to confine the numerical approximations to the state-space of the considered SDE. We provide numerical experiments that confirm the theoretical results and compare the proposed Lamperti-splitting schemes to other numerical schemes for SDEs.
Tactile sensing in mobile robots remains under-explored, mainly due to challenges related to sensor integration and the complexities of distributed sensing. In this work, we present a tactile sensing architecture for mobile robots based on wheel-mounted acoustic waveguides. Our sensor architecture enables tactile sensing along the entire circumference of a wheel with a single active component: an off-the-shelf acoustic rangefinder. We present findings showing that our sensor, mounted on the wheel of a mobile robot, is capable of discriminating between different terrains, detecting and classifying obstacles with different geometries, and performing collision detection via contact localization. We also present a comparison between our sensor and sensors traditionally used in mobile robots, and point to the potential for sensor fusion approaches that leverage the unique capabilities of our tactile sensing architecture. Our findings demonstrate that autonomous mobile robots can further leverage our sensor architecture for diverse mapping tasks requiring knowledge of terrain material, surface topology, and underlying structure.
In large-scale, data-driven applications, parameters are often only known approximately due to noise and limited data samples. In this paper, we focus on high-dimensional optimization problems with linear constraints under uncertain conditions. To find high quality solutions for which the violation of the true constraints is limited, we develop a linear shrinkage method that blends random matrix theory and robust optimization principles. It aims to minimize the Frobenius distance between the estimated and the true parameter matrix, especially when dealing with a large and comparable number of constraints and variables. This data-driven method excels in simulations, showing superior noise resilience and more stable performance in both obtaining high quality solutions and adhering to the true constraints compared to traditional robust optimization. Our findings highlight the effectiveness of our method in improving the robustness and reliability of optimization in high-dimensional, data-driven scenarios.
Fully-strict fork-join parallelism is a powerful model for shared-memory programming due to its optimal time scaling and strong bounds on memory scaling. The latter is rarely achieved due to the difficulty of implementing continuation stealing in traditional High Performance Computing (HPC) languages -- where it is often impossible without modifying the compiler or resorting to non-portable techniques. We demonstrate how stackless coroutines (a new feature in C++20) can enable fully-portable continuation stealing and present libfork a lock-free fine-grained parallelism library, combining coroutines with user-space, geometric segmented-stacks. We show our approach is able to achieve optimal time/memory scaling, both theoretically and empirically, across a variety of benchmarks. Compared to openMP (libomp), libfork is on average 7.2x faster and consumes 10x less memory. Similarly, compared to Intel's TBB, libfork is on average 2.7x faster and consumes 6.2x less memory. Additionally, we introduce non-uniform memory access (NUMA) optimizations for schedulers that demonstrate performance matching busy-waiting schedulers.
The author has recently introduced abstract algebraic frameworks of analogical proportions and similarity within the general setting of universal algebra. The purpose of this paper is to build a bridge from similarity to analogical proportions by formulating the latter in terms of the former. The benefit of this similarity-based approach is that the connection between proportions and similarity is built into the framework and therefore evident which is appealing since proportions and similarity are both at the center of analogy; moreover, future results on similarity can directly be applied to analogical proportions.
Graph-centric artificial intelligence (graph AI) has achieved remarkable success in modeling interacting systems prevalent in nature, from dynamical systems in biology to particle physics. The increasing heterogeneity of data calls for graph neural architectures that can combine multiple inductive biases. However, combining data from various sources is challenging because appropriate inductive bias may vary by data modality. Multimodal learning methods fuse multiple data modalities while leveraging cross-modal dependencies to address this challenge. Here, we survey 140 studies in graph-centric AI and realize that diverse data types are increasingly brought together using graphs and fed into sophisticated multimodal models. These models stratify into image-, language-, and knowledge-grounded multimodal learning. We put forward an algorithmic blueprint for multimodal graph learning based on this categorization. The blueprint serves as a way to group state-of-the-art architectures that treat multimodal data by choosing appropriately four different components. This effort can pave the way for standardizing the design of sophisticated multimodal architectures for highly complex real-world problems.