亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We propose a new framework for studying effective resource allocation in a load balancing system under sparse communication, a problem that arises, for instance, in data centers. At the core of our approach is state approximation, where the load balancer first estimates the servers' states via a carefully designed communication protocol, and subsequently feeds the said approximated state into a load balancing algorithm to generate a routing decision. Specifically, we show that by using a novel approximation algorithm and server-side-adaptive communication protocol, the load balancer can obtain good queue-length approximations using a communication frequency that decays quadratically in the maximum approximation error. Furthermore, using a diffusion-scaled analysis, we prove that the load balancer achieves asymptotically optimal performance whenever the approximation error scales at a lower rate than the square-root of the total processing capacity, which includes as a special case constant-error approximations. Using simulations, we find that the proposed policies achieve performance that matches or outperforms the state-of-the-art load balancing algorithms while reducing communication rates by as much as 90%. Taken as a whole, our results demonstrate that it is possible to achieve good performance even under very sparse communication, and provide strong evidence that approximate states serve as a robust and powerful information intermediary for designing communication-efficient load balancing systems.

相關內容

Federated learning (FL) enables distributed devices to jointly train a shared model while keeping the training data local. Different from the horizontal FL (HFL) setting where each client has partial data samples, vertical FL (VFL), which allows each client to collect partial features, has attracted intensive research efforts recently. In this paper, we identified two challenges that state-of-the-art VFL frameworks are facing: (1) some works directly average the learned feature embeddings and therefore might lose the unique properties of each local feature set; (2) server needs to communicate gradients with the clients for each training step, incurring high communication cost that leads to rapid consumption of privacy budgets. In this paper, we aim to address the above challenges and propose an efficient VFL with multiple linear heads (VIM) framework, where each head corresponds to local clients by taking the separate contribution of each client into account. In addition, we propose an Alternating Direction Method of Multipliers (ADMM)-based method to solve our optimization problem, which reduces the communication cost by allowing multiple local updates in each step, and thus leads to better performance under differential privacy. We consider various settings including VFL with model splitting and without model splitting. For both settings, we carefully analyze the differential privacy mechanism for our framework. Moreover, we show that a byproduct of our framework is that the weights of learned linear heads reflect the importance of local clients. We conduct extensive evaluations and show that on four real-world datasets, VIM achieves significantly higher performance and faster convergence compared with state-of-the-arts. We also explicitly evaluate the importance of local clients and show that VIM enables functionalities such as client-level explanation and client denoising.

This paper focuses on waveform design for joint radar and communication systems and presents a new subset selection process to improve the communication error rate performance and global accuracy of radar sensing of the random stepped frequency permutation waveform. An optimal communication receiver based on integer programming is proposed to handle any subset of permutations followed by a more efficient sub-optimal receiver based on the Hungarian algorithm. Considering optimum maximum likelihood detection, the block error rate is analyzed under both additive white Gaussian noise and correlated Rician fading. We propose two methods to select a permutation subset with an improved block error rate and an efficient encoding scheme to map the information symbols to selected permutations under these subsets. From the radar perspective, the ambiguity function is analyzed with regards to the local and the global accuracy of target detection. Furthermore, a subset selection method to reduce the maximum sidelobe height is proposed by extending the properties of Costas arrays. Finally, the process of remapping the frequency tones to the symbol set used to generate permutations is introduced as a method to improve both the communication and radar performances of the selected permutation subset.

It was observed in \citet{gupta2009differentially} that the Set Cover problem has strong impossibility results under differential privacy. In our work, we observe that these hardness results dissolve when we turn to the Partial Set Cover problem, where we only need to cover a $\rho$-fraction of the elements in the universe, for some $\rho\in(0,1)$. We show that this relaxation enables us to avoid the impossibility results: under loose conditions on the input set system, we give differentially private algorithms which output an explicit set cover with non-trivial approximation guarantees. In particular, this is the first differentially private algorithm which outputs an explicit set cover. Using our algorithm for Partial Set Cover as a subroutine, we give a differentially private (bicriteria) approximation algorithm for a facility location problem which generalizes $k$-center/$k$-supplier with outliers. Like with the Set Cover problem, no algorithm has been able to give non-trivial guarantees for $k$-center/$k$-supplier-type facility location problems due to the high sensitivity and impossibility results. Our algorithm shows that relaxing the covering requirement to serving only a $\rho$-fraction of the population, for $\rho\in(0,1)$, enables us to circumvent the inherent hardness. Overall, our work is an important step in tackling and understanding impossibility results in private combinatorial optimization.

We propose DeepIPC, an end-to-end multi-task model that handles both perception and control tasks in driving a mobile robot autonomously. The model consists of two main parts, perception and controller modules. The perception module takes RGB image and depth map to perform semantic segmentation and bird's eye view (BEV) semantic mapping along with providing their encoded features. Meanwhile, the controller module processes these features with the measurement of GNSS locations and angular speed to estimate waypoints that come with latent features. Then, two different agents are used to translate waypoints and latent features into a set of navigational controls to drive the robot. The model is evaluated by predicting driving records and performing automated driving under various conditions in the real environment. Based on the experimental results, DeepIPC achieves the best drivability and multi-task performance even with fewer parameters compared to the other models.

Importance sampling (IS) is valuable in reducing the variance of Monte Carlo sampling for many areas, including finance, rare event simulation, and Bayesian inference. It is natural and obvious to combine quasi-Monte Carlo (QMC) methods with IS to achieve a faster rate of convergence. However, a naive replacement of Monte Carlo with QMC may not work well. This paper investigates the convergence rates of randomized QMC-based IS for estimating integrals with respect to a Gaussian measure, in which the IS measure is a Gaussian or $t$ distribution. We prove that if the target function satisfies the so-called boundary growth condition and the covariance matrix of the IS density has eigenvalues no smaller than 1, then randomized QMC with the Gaussian proposal has a root mean squared error of $O(N^{-1+\epsilon})$ for arbitrarily small $\epsilon>0$. Similar results of $t$ distribution as the proposal are also established. These sufficient conditions help to assess the effectiveness of IS in QMC. For some particular applications, we find that the Laplace IS, a very general approach to approximate the target function by a quadratic Taylor approximation around its mode, has eigenvalues smaller than 1, making the resulting integrand less favorable for QMC. From this point of view, when using Gaussian distributions as the IS proposal, a change of measure via Laplace IS may transform a favorable integrand into unfavorable one for QMC although the variance of Monte Carlo sampling is reduced. We also give some examples to verify our propositions and warn against naive replacement of MC with QMC under IS proposals. Numerical results suggest that using Laplace IS with $t$ distributions is more robust than that with Gaussian distributions.

Task allocation using a team or coalition of robots is one of the most important problems in robotics, computer science, operational research, and artificial intelligence. In recent work, research has focused on handling complex objectives and feasibility constraints amongst other variations of the multi-robot task allocation problem. There are many examples of important research progress in these directions. We present a general formulation of the task allocation problem that generalizes several versions that are well-studied. Our formulation includes the states of robots, tasks, and the surrounding environment in which they operate. We describe how the problem can vary depending on the feasibility constraints, objective functions, and the level of dynamically changing information. In addition, we discuss existing solution approaches for the problem including optimization-based approaches, and market-based approaches.

Federated learning (FL) is a recently developed area of machine learning, in which the private data of a large number of distributed clients is used to develop a global model under the coordination of a central server without explicitly exposing the data. The standard FL strategy has a number of significant bottlenecks including large communication requirements and high impact on the clients' resources. Several strategies have been described in the literature trying to address these issues. In this paper, a novel scheme based on the notion of "model growing" is proposed. Initially, the server deploys a small model of low complexity, which is trained to capture the data complexity during the initial set of rounds. When the performance of such a model saturates, the server switches to a larger model with the help of function-preserving transformations. The model complexity increases as more data is processed by the clients, and the overall process continues until the desired performance is achieved. Therefore, the most complex model is broadcast only at the final stage in our approach resulting in substantial reduction in communication cost and client computational requirements. The proposed approach is tested extensively on three standard benchmarks and is shown to achieve substantial reduction in communication and client computation while achieving comparable accuracy when compared to the current most effective strategies.

One of the main tasks for autonomous robot swarms is to collectively decide on the best available option. Achieving that requires a high quality communication between the agents that may not be always available in a real world environment. In this paper we introduce the communication-constrained collective decision-making problem where some areas of the environment limit the agents' ability to communicate, either by reducing success rate or blocking the communication channels. We propose a decentralised algorithm for mapping environmental features for robot swarms as well as improving collective decision making in communication-limited environments without prior knowledge of the communication landscape. Our results show that making a collective aware of the communication environment can improve the speed of convergence in the presence of communication limitations, at least 3 times faster, without sacrificing accuracy.

Data augmentation, the artificial creation of training data for machine learning by transformations, is a widely studied research field across machine learning disciplines. While it is useful for increasing the generalization capabilities of a model, it can also address many other challenges and problems, from overcoming a limited amount of training data over regularizing the objective to limiting the amount data used to protect privacy. Based on a precise description of the goals and applications of data augmentation (C1) and a taxonomy for existing works (C2), this survey is concerned with data augmentation methods for textual classification and aims to achieve a concise and comprehensive overview for researchers and practitioners (C3). Derived from the taxonomy, we divided more than 100 methods into 12 different groupings and provide state-of-the-art references expounding which methods are highly promising (C4). Finally, research perspectives that may constitute a building block for future work are given (C5).

Many natural language processing tasks solely rely on sparse dependencies between a few tokens in a sentence. Soft attention mechanisms show promising performance in modeling local/global dependencies by soft probabilities between every two tokens, but they are not effective and efficient when applied to long sentences. By contrast, hard attention mechanisms directly select a subset of tokens but are difficult and inefficient to train due to their combinatorial nature. In this paper, we integrate both soft and hard attention into one context fusion model, "reinforced self-attention (ReSA)", for the mutual benefit of each other. In ReSA, a hard attention trims a sequence for a soft self-attention to process, while the soft attention feeds reward signals back to facilitate the training of the hard one. For this purpose, we develop a novel hard attention called "reinforced sequence sampling (RSS)", selecting tokens in parallel and trained via policy gradient. Using two RSS modules, ReSA efficiently extracts the sparse dependencies between each pair of selected tokens. We finally propose an RNN/CNN-free sentence-encoding model, "reinforced self-attention network (ReSAN)", solely based on ReSA. It achieves state-of-the-art performance on both Stanford Natural Language Inference (SNLI) and Sentences Involving Compositional Knowledge (SICK) datasets.

北京阿比特科技有限公司