亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Large Language Models (LLMs), such as ChatGPT, have drawn a lot of attentions recently in the legal domain due to its emergent ability to tackle a variety of legal tasks. However, it is still unknown if LLMs are able to analyze a legal case and perform reasoning in the same manner as lawyers. Therefore, we constructed a novel corpus consisting of scenarios pertain to Contract Acts Malaysia and Australian Social Act for Dependent Child. ChatGPT is applied to perform analysis on the corpus using the IRAC method, which is a framework widely used by legal professionals for organizing legal analysis. Each scenario in the corpus is annotated with a complete IRAC analysis in a semi-structured format so that both machines and legal professionals are able to interpret and understand the annotations. In addition, we conducted the first empirical assessment of ChatGPT for IRAC analysis in order to understand how well it aligns with the analysis of legal professionals. Our experimental results shed lights on possible future research directions to improve alignments between LLMs and legal experts in terms of legal reasoning.

相關內容

With the recent spike in the number and availability of Large Language Models (LLMs), it has become increasingly important to provide large and realistic benchmarks for evaluating Knowledge Graph Question Answering (KGQA) systems. So far the majority of benchmarks rely on pattern-based SPARQL query generation approaches. The subsequent natural language (NL) question generation is conducted through crowdsourcing or other automated methods, such as rule-based paraphrasing or NL question templates. Although some of these datasets are of considerable size, their pitfall lies in their pattern-based generation approaches, which do not always generalize well to the vague and linguistically diverse questions asked by humans in real-world contexts. In this paper, we introduce Spider4SPARQL - a new SPARQL benchmark dataset featuring 9,693 previously existing manually generated NL questions and 4,721 unique, novel, and complex SPARQL queries of varying complexity. In addition to the NL/SPARQL pairs, we also provide their corresponding 166 knowledge graphs and ontologies, which cover 138 different domains. Our complex benchmark enables novel ways of evaluating the strengths and weaknesses of modern KGQA systems. We evaluate the system with state-of-the-art KGQA systems as well as LLMs, which achieve only up to 45\% execution accuracy, demonstrating that Spider4SPARQL is a challenging benchmark for future research.

A Large Language Model (LLM) represents a cutting-edge artificial intelligence model that generates coherent content, including grammatically precise sentences, human-like paragraphs, and syntactically accurate code snippets. LLMs can play a pivotal role in software development, including software testing. LLMs go beyond traditional roles such as requirement analysis and documentation and can support test case generation, making them valuable tools that significantly enhance testing practices within the field. Hence, we explore the practical application of LLMs in software testing within an industrial setting, focusing on their current use by professional testers. In this context, rather than relying on existing data, we conducted a cross-sectional survey and collected data within real working contexts, specifically, engaging with practitioners in industrial settings. We applied quantitative and qualitative techniques to analyze and synthesize our collected data. Our findings demonstrate that LLMs effectively enhance testing documents and significantly assist testing professionals in programming tasks like debugging and test case automation. LLMs can support individuals engaged in manual testing who need to code. However, it is crucial to emphasize that, at this early stage, software testing professionals should use LLMs with caution while well-defined methods and guidelines are being built for the secure adoption of these tools.

Despite the commercial abundance of UAVs, aerial data acquisition remains challenging, and the existing Asia and North America-centric open-source UAV datasets are small-scale or low-resolution and lack diversity in scene contextuality. Additionally, the color content of the scenes, solar-zenith angle, and population density of different geographies influence the data diversity. These two factors conjointly render suboptimal aerial-visual perception of the deep neural network (DNN) models trained primarily on the ground-view data, including the open-world foundational models. To pave the way for a transformative era of aerial detection, we present Multiview Aerial Visual RECognition or MAVREC, a video dataset where we record synchronized scenes from different perspectives -- ground camera and drone-mounted camera. MAVREC consists of around 2.5 hours of industry-standard 2.7K resolution video sequences, more than 0.5 million frames, and 1.1 million annotated bounding boxes. This makes MAVREC the largest ground and aerial-view dataset, and the fourth largest among all drone-based datasets across all modalities and tasks. Through our extensive benchmarking on MAVREC, we recognize that augmenting object detectors with ground-view images from the corresponding geographical location is a superior pre-training strategy for aerial detection. Building on this strategy, we benchmark MAVREC with a curriculum-based semi-supervised object detection approach that leverages labeled (ground and aerial) and unlabeled (only aerial) images to enhance the aerial detection. We publicly release the MAVREC dataset: //mavrec.github.io.

Deep Graph Learning (DGL) has emerged as a crucial technique across various domains. However, recent studies have exposed vulnerabilities in DGL models, such as susceptibility to evasion and poisoning attacks. While empirical and provable robustness techniques have been developed to defend against graph modification attacks (GMAs), the problem of certified robustness against graph injection attacks (GIAs) remains largely unexplored. To bridge this gap, we introduce the node-aware bi-smoothing framework, which is the first certifiably robust approach for general node classification tasks against GIAs. Notably, the proposed node-aware bi-smoothing scheme is model-agnostic and is applicable for both evasion and poisoning attacks. Through rigorous theoretical analysis, we establish the certifiable conditions of our smoothing scheme. We also explore the practical implications of our node-aware bi-smoothing schemes in two contexts: as an empirical defense approach against real-world GIAs and in the context of recommendation systems. Furthermore, we extend two state-of-the-art certified robustness frameworks to address node injection attacks and compare our approach against them. Extensive evaluations demonstrate the effectiveness of our proposed certificates.

The following is a technical report to test the validity of the proposed Subspace Pyramid Fusion Module (SPFM) to capture multi-scale feature representations, which is more useful for semantic segmentation. In this investigation, we have proposed the Efficient Shuffle Attention Module(ESAM) to reconstruct the skip-connections paths by fusing multi-level global context features. Experimental results on two well-known semantic segmentation datasets, including Camvid and Cityscapes, show the effectiveness of our proposed method.

While Reinforcement Learning (RL) achieves tremendous success in sequential decision-making problems of many domains, it still faces key challenges of data inefficiency and the lack of interpretability. Interestingly, many researchers have leveraged insights from the causality literature recently, bringing forth flourishing works to unify the merits of causality and address well the challenges from RL. As such, it is of great necessity and significance to collate these Causal Reinforcement Learning (CRL) works, offer a review of CRL methods, and investigate the potential functionality from causality toward RL. In particular, we divide existing CRL approaches into two categories according to whether their causality-based information is given in advance or not. We further analyze each category in terms of the formalization of different models, ranging from the Markov Decision Process (MDP), Partially Observed Markov Decision Process (POMDP), Multi-Arm Bandits (MAB), and Dynamic Treatment Regime (DTR). Moreover, we summarize the evaluation matrices and open sources while we discuss emerging applications, along with promising prospects for the future development of CRL.

Knowledge Graph Embedding (KGE) aims to learn representations for entities and relations. Most KGE models have gained great success, especially on extrapolation scenarios. Specifically, given an unseen triple (h, r, t), a trained model can still correctly predict t from (h, r, ?), or h from (?, r, t), such extrapolation ability is impressive. However, most existing KGE works focus on the design of delicate triple modeling function, which mainly tells us how to measure the plausibility of observed triples, but offers limited explanation of why the methods can extrapolate to unseen data, and what are the important factors to help KGE extrapolate. Therefore in this work, we attempt to study the KGE extrapolation of two problems: 1. How does KGE extrapolate to unseen data? 2. How to design the KGE model with better extrapolation ability? For the problem 1, we first discuss the impact factors for extrapolation and from relation, entity and triple level respectively, propose three Semantic Evidences (SEs), which can be observed from train set and provide important semantic information for extrapolation. Then we verify the effectiveness of SEs through extensive experiments on several typical KGE methods. For the problem 2, to make better use of the three levels of SE, we propose a novel GNN-based KGE model, called Semantic Evidence aware Graph Neural Network (SE-GNN). In SE-GNN, each level of SE is modeled explicitly by the corresponding neighbor pattern, and merged sufficiently by the multi-layer aggregation, which contributes to obtaining more extrapolative knowledge representation. Finally, through extensive experiments on FB15k-237 and WN18RR datasets, we show that SE-GNN achieves state-of-the-art performance on Knowledge Graph Completion task and performs a better extrapolation ability.

Deep Learning algorithms have achieved the state-of-the-art performance for Image Classification and have been used even in security-critical applications, such as biometric recognition systems and self-driving cars. However, recent works have shown those algorithms, which can even surpass the human capabilities, are vulnerable to adversarial examples. In Computer Vision, adversarial examples are images containing subtle perturbations generated by malicious optimization algorithms in order to fool classifiers. As an attempt to mitigate these vulnerabilities, numerous countermeasures have been constantly proposed in literature. Nevertheless, devising an efficient defense mechanism has proven to be a difficult task, since many approaches have already shown to be ineffective to adaptive attackers. Thus, this self-containing paper aims to provide all readerships with a review of the latest research progress on Adversarial Machine Learning in Image Classification, however with a defender's perspective. Here, novel taxonomies for categorizing adversarial attacks and defenses are introduced and discussions about the existence of adversarial examples are provided. Further, in contrast to exisiting surveys, it is also given relevant guidance that should be taken into consideration by researchers when devising and evaluating defenses. Finally, based on the reviewed literature, it is discussed some promising paths for future research.

Compared with cheap addition operation, multiplication operation is of much higher computation complexity. The widely-used convolutions in deep neural networks are exactly cross-correlation to measure the similarity between input feature and convolution filters, which involves massive multiplications between float values. In this paper, we present adder networks (AdderNets) to trade these massive multiplications in deep neural networks, especially convolutional neural networks (CNNs), for much cheaper additions to reduce computation costs. In AdderNets, we take the $\ell_1$-norm distance between filters and input feature as the output response. The influence of this new similarity measure on the optimization of neural network have been thoroughly analyzed. To achieve a better performance, we develop a special back-propagation approach for AdderNets by investigating the full-precision gradient. We then propose an adaptive learning rate strategy to enhance the training procedure of AdderNets according to the magnitude of each neuron's gradient. As a result, the proposed AdderNets can achieve 74.9% Top-1 accuracy 91.7% Top-5 accuracy using ResNet-50 on the ImageNet dataset without any multiplication in convolution layer.

In recent years, DBpedia, Freebase, OpenCyc, Wikidata, and YAGO have been published as noteworthy large, cross-domain, and freely available knowledge graphs. Although extensively in use, these knowledge graphs are hard to compare against each other in a given setting. Thus, it is a challenge for researchers and developers to pick the best knowledge graph for their individual needs. In our recent survey, we devised and applied data quality criteria to the above-mentioned knowledge graphs. Furthermore, we proposed a framework for finding the most suitable knowledge graph for a given setting. With this paper we intend to ease the access to our in-depth survey by presenting simplified rules that map individual data quality requirements to specific knowledge graphs. However, this paper does not intend to replace our previously introduced decision-support framework. For an informed decision on which KG is best for you we still refer to our in-depth survey.

北京阿比特科技有限公司