Multi-product formulas (MPF) are linear combinations of Trotter circuits offering high-quality simulation of Hamiltonian time evolution with fewer Trotter steps. Here we report two contributions aimed at making multi-product formulas more viable for near-term quantum simulations. First, we extend the theory of Trotter error with commutator scaling developed by Childs, Su, Tran et al. to multi-product formulas. Our result implies that multi-product formulas can achieve a quadratic reduction of Trotter error in 1-norm (nuclear norm) on arbitrary time intervals compared with the regular product formulas without increasing the required circuit depth or qubit connectivity. The number of circuit repetitions grows only by a constant factor. Second, we introduce dynamic multi-product formulas with time-dependent coefficients chosen to minimize a certain efficiently computable proxy for the Trotter error. We use a minimax estimation method to make dynamic multi-product formulas robust to uncertainty from algorithmic errors, sampling and hardware noise. We call this method Minimax MPF and we provide a rigorous bound on its error.
We explore the Ziv-Lempel and Crochemore factorizations of some classical automatic sequences making an extensive use of the theorem prover Walnut.
We identify reduced order models (ROM) of forced systems from data using invariant foliations. The forcing can be external, parametric, periodic or quasi-periodic. The process has four steps: 1. identify an approximate invariant torus and the linear dynamics about the torus; 2. identify a globally defined invariant foliation about the torus; 3. identify a local foliation about an invariant manifold that complements the global foliation 4. extract the invariant manifold as the leaf going through the torus and interpret the result. We combine steps 2 and 3, so that we can track the location of the invariant torus and scale the invariance equations appropriately. We highlight some fundamental limitations of invariant manifolds and foliations when fitting them to data, that require further mathematics to resolve.
We present a method for end-to-end learning of Koopman surrogate models for optimal performance in control. In contrast to previous contributions that employ standard reinforcement learning (RL) algorithms, we use a training algorithm that exploits the potential differentiability of environments based on mechanistic simulation models. We evaluate the performance of our method by comparing it to that of other controller type and training algorithm combinations on a literature known eNMPC case study. Our method exhibits superior performance on this problem, thereby constituting a promising avenue towards more capable controllers that employ dynamic surrogate models.
We formulate a uniform tail bound for empirical processes indexed by a class of functions, in terms of the individual deviations of the functions rather than the worst-case deviation in the considered class. The tail bound is established by introducing an initial "deflation" step to the standard generic chaining argument. The resulting tail bound is the sum of the complexity of the "deflated function class" in terms of a generalization of Talagrand's $\gamma$ functional, and the deviation of the function instance, both of which are formulated based on the natural seminorm induced by the corresponding Cram\'{e}r functions. We also provide certain approximations for the mentioned seminorm when the function class lies in a given (exponential type) Orlicz space, that can be used to make the complexity term and the deviation term more explicit.
We develop a new coarse-scale approximation strategy for the nonlinear single-continuum Richards equation as an unsaturated flow over heterogeneous non-periodic media, using the online generalized multiscale finite element method (online GMsFEM) together with deep learning. A novelty of this approach is that local online multiscale basis functions are computed rapidly and frequently by utilizing deep neural networks (DNNs). More precisely, we employ the training set of stochastic permeability realizations and the computed relating online multiscale basis functions to train neural networks. The nonlinear map between such permeability fields and online multiscale basis functions is developed by our proposed deep learning algorithm. That is, in a new way, the predicted online multiscale basis functions incorporate the nonlinearity treatment of the Richards equation and refect any time-dependent changes in the problem's properties. Multiple numerical experiments in two-dimensional model problems show the good performance of this technique, in terms of predictions of the online multiscale basis functions and thus finding solutions.
Existing statistical methods for the analysis of micro-randomized trials (MRTs) are designed to estimate causal excursion effects using data from a single MRT. In practice, however, researchers can often find previous MRTs that employ similar interventions. In this paper, we develop data integration methods that capitalize on this additional information, leading to statistical efficiency gains. To further increase efficiency, we demonstrate how to combine these approaches according to a generalization of multivariate precision weighting that allows for correlation between estimates, and we show that the resulting meta-estimator possesses an asymptotic optimality property. We illustrate our methods in simulation and in a case study involving two MRTs in the area of smoking cessation.
The subject of this work is an adaptive stochastic Galerkin finite element method for parametric or random elliptic partial differential equations, which generates sparse product polynomial expansions with respect to the parametric variables of solutions. For the corresponding spatial approximations, an independently refined finite element mesh is used for each polynomial coefficient. The method relies on multilevel expansions of input random fields and achieves error reduction with uniform rate. In particular, the saturation property for the refinement process is ensured by the algorithm. The results are illustrated by numerical experiments, including cases with random fields of low regularity.
Multi-sequence magnetic resonance imaging (MRI) has found wide applications in both modern clinical studies and deep learning research. However, in clinical practice, it frequently occurs that one or more of the MRI sequences are missing due to different image acquisition protocols or contrast agent contraindications of patients, limiting the utilization of deep learning models trained on multi-sequence data. One promising approach is to leverage generative models to synthesize the missing sequences, which can serve as a surrogate acquisition. State-of-the-art methods tackling this problem are based on convolutional neural networks (CNN) which usually suffer from spectral biases, resulting in poor reconstruction of high-frequency fine details. In this paper, we propose Conditional Neural fields with Shift modulation (CoNeS), a model that takes voxel coordinates as input and learns a representation of the target images for multi-sequence MRI translation. The proposed model uses a multi-layer perceptron (MLP) instead of a CNN as the decoder for pixel-to-pixel mapping. Hence, each target image is represented as a neural field that is conditioned on the source image via shift modulation with a learned latent code. Experiments on BraTS 2018 and an in-house clinical dataset of vestibular schwannoma patients showed that the proposed method outperformed state-of-the-art methods for multi-sequence MRI translation both visually and quantitatively. Moreover, we conducted spectral analysis, showing that CoNeS was able to overcome the spectral bias issue common in conventional CNN models. To further evaluate the usage of synthesized images in clinical downstream tasks, we tested a segmentation network using the synthesized images at inference.
Lattices are architected metamaterials whose properties strongly depend on their geometrical design. The analogy between lattices and graphs enables the use of graph neural networks (GNNs) as a faster surrogate model compared to traditional methods such as finite element modelling. In this work, we generate a big dataset of structure-property relationships for strut-based lattices. The dataset is made available to the community which can fuel the development of methods anchored in physical principles for the fitting of fourth-order tensors. In addition, we present a higher-order GNN model trained on this dataset. The key features of the model are (i) SE(3) equivariance, and (ii) consistency with the thermodynamic law of conservation of energy. We compare the model to non-equivariant models based on a number of error metrics and demonstrate its benefits in terms of predictive performance and reduced training requirements. Finally, we demonstrate an example application of the model to an architected material design task. The methods which we developed are applicable to fourth-order tensors beyond elasticity such as piezo-optical tensor etc.
Ever since the seminal work of R. A. Fisher and F. Yates, factorial designs have been an important experimental tool to simultaneously estimate the effects of multiple treatment factors. In factorial designs, the number of treatment combinations grows exponentially with the number of treatment factors, which motivates the forward selection strategy based on the sparsity, hierarchy, and heredity principles for factorial effects. Although this strategy is intuitive and has been widely used in practice, its rigorous statistical theory has not been formally established. To fill this gap, we establish design-based theory for forward factor selection in factorial designs based on the potential outcome framework. We not only prove a consistency property for the factor selection procedure but also discuss statistical inference after factor selection. In particular, with selection consistency, we quantify the advantages of forward selection based on asymptotic efficiency gain in estimating factorial effects. With inconsistent selection in higher-order interactions, we propose two strategies and investigate their impact on subsequent inference. Our formulation differs from the existing literature on variable selection and post-selection inference because our theory is based solely on the physical randomization of the factorial design and does not rely on a correctly specified outcome model.