亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Recent advances in the performance of large language models (LLMs) have sparked debate over whether, given sufficient training, high-level human abilities emerge in such generic forms of artificial intelligence (AI). Despite the exceptional performance of LLMs on a wide range of tasks involving natural language processing and reasoning, there has been sharp disagreement as to whether their abilities extend to more creative human abilities. A core example is the ability to interpret novel metaphors. Given the enormous and non curated text corpora used to train LLMs, a serious obstacle to designing tests is the requirement of finding novel yet high quality metaphors that are unlikely to have been included in the training data. Here we assessed the ability of GPT4, a state of the art large language model, to provide natural-language interpretations of novel literary metaphors drawn from Serbian poetry and translated into English. Despite exhibiting no signs of having been exposed to these metaphors previously, the AI system consistently produced detailed and incisive interpretations. Human judges, blind to the fact that an AI model was involved, rated metaphor interpretations generated by GPT4 as superior to those provided by a group of college students. In interpreting reversed metaphors, GPT4, as well as humans, exhibited signs of sensitivity to the Gricean cooperative principle. In addition, for several novel English poems GPT4 produced interpretations that were rated as excellent or good by a human literary critic. These results indicate that LLMs such as GPT4 have acquired an emergent ability to interpret complex metaphors, including those embedded in novel poems.

相關內容

Do large language models (LLMs) exhibit sociodemographic biases, even when they decline to respond? To bypass their refusal to "speak," we study this research question by probing contextualized embeddings and exploring whether this bias is encoded in its latent representations. We propose a logistic Bradley-Terry probe which predicts word pair preferences of LLMs from the words' hidden vectors. We first validate our probe on three pair preference tasks and thirteen LLMs, where we outperform the word embedding association test (WEAT), a standard approach in testing for implicit association, by a relative 27% in error rate. We also find that word pair preferences are best represented in the middle layers. Next, we transfer probes trained on harmless tasks (e.g., pick the larger number) to controversial ones (compare ethnicities) to examine biases in nationality, politics, religion, and gender. We observe substantial bias for all target classes: for instance, the Mistral model implicitly prefers Europe to Africa, Christianity to Judaism, and left-wing to right-wing politics, despite declining to answer. This suggests that instruction fine-tuning does not necessarily debias contextualized embeddings. Our codebase is at //github.com/castorini/biasprobe.

Numerous studies have highlighted the privacy risks associated with pretrained large language models. In contrast, our research offers a unique perspective by demonstrating that pretrained large language models can effectively contribute to privacy preservation. We propose a locally differentially private mechanism called DP-Prompt, which leverages the power of pretrained large language models and zero-shot prompting to counter author de-anonymization attacks while minimizing the impact on downstream utility. When DP-Prompt is used with a powerful language model like ChatGPT (gpt-3.5), we observe a notable reduction in the success rate of de-anonymization attacks, showing that it surpasses existing approaches by a considerable margin despite its simpler design. For instance, in the case of the IMDB dataset, DP-Prompt (with ChatGPT) perfectly recovers the clean sentiment F1 score while achieving a 46\% reduction in author identification F1 score against static attackers and a 26\% reduction against adaptive attackers. We conduct extensive experiments across six open-source large language models, ranging up to 7 billion parameters, to analyze various effects of the privacy-utility tradeoff.

Deep learning succeeds by doing hierarchical feature learning, yet tuning Hyper-Parameters (HP) such as initialization scales, learning rates etc., only give indirect control over this behavior. In this paper, we propose the alignment between the feature updates and the backward pass as a key notion to predict, measure and control feature learning. On the one hand, we show that when alignment holds, the magnitude of feature updates after one SGD step is related to the magnitude of the forward and backward passes by a simple and general formula. This leads to techniques to automatically adjust HPs (initialization scales and learning rates) at initialization and throughout training to attain a desired feature learning behavior. On the other hand, we show that, at random initialization, this alignment is determined by the spectrum of a certain kernel, and that well-conditioned layer-to-layer Jacobians (aka dynamical isometry) implies alignment. Finally, we investigate ReLU MLPs and ResNets in the large width-then-depth limit. Combining hints from random matrix theory and numerical experiments, we show that (i) in MLP with iid initializations, alignment degenerates with depth, making it impossible to start training, and that (ii) in ResNets, the branch scale $1/\sqrt{\text{depth}}$ is the only one maintaining non-trivial alignment at infinite depth.

While fine-tuning unlocks the potential of a pre-trained model for a specific task, it compromises the model's ability to generalize to out-of-distribution (OOD) datasets. To mitigate this, robust fine-tuning aims to ensure performance on OOD datasets as well as on an in-distribution (ID) dataset for which the model is being tuned. However, another criterion for reliable machine learning (ML), confidence calibration, has been overlooked despite its increasing demand for real-world high-stakes ML applications (e.g., autonomous driving and medical diagnosis). For the first time, we raise concerns about the calibration of fine-tuned vision-language models (VLMs) under distribution shift by showing that naive fine-tuning and even state-of-the-art robust fine-tuning methods hurt the calibration of pre-trained VLMs, especially on OOD datasets. To address this issue, we provide a simple approach, called calibrated robust fine-tuning (CaRot), that incentivizes calibration and robustness on both ID and OOD datasets. Empirical results on ImageNet-1K distribution shift evaluation verify the effectiveness of our method.

Large discrete action spaces (LDAS) remain a central challenge in reinforcement learning. Existing solution approaches can handle unstructured LDAS with up to a few million actions. However, many real-world applications in logistics, production, and transportation systems have combinatorial action spaces, whose size grows well beyond millions of actions, even on small instances. Fortunately, such action spaces exhibit structure, e.g., equally spaced discrete resource units. With this work, we focus on handling structured LDAS (SLDAS) with sizes that cannot be handled by current benchmarks: we propose Dynamic Neighborhood Construction (DNC), a novel exploitation paradigm for SLDAS. We present a scalable neighborhood exploration heuristic that utilizes this paradigm and efficiently explores the discrete neighborhood around the continuous proxy action in structured action spaces with up to $10^{73}$ actions. We demonstrate the performance of our method by benchmarking it against three state-of-the-art approaches designed for large discrete action spaces across two distinct environments. Our results show that DNC matches or outperforms state-of-the-art approaches while being computationally more efficient. Furthermore, our method scales to action spaces that so far remained computationally intractable for existing methodologies.

Probabilistic Diffusion Models (PDMs) have recently emerged as a very promising class of generative models, achieving high performance in natural image generation. However, their performance relative to non-natural images, like radar-based satellite data, remains largely unknown. Generating large amounts of synthetic (and especially labelled) satellite data is crucial to implement deep-learning approaches for the processing and analysis of (interferometric) satellite aperture radar data. Here, we leverage PDMs to generate several radar-based satellite image datasets. We show that PDMs succeed in generating images with complex and realistic structures, but that sampling time remains an issue. Indeed, accelerated sampling strategies, which work well on simple image datasets like MNIST, fail on our radar datasets. We provide a simple and versatile open-source //github.com/thomaskerdreux/PDM_SAR_InSAR_generation to train, sample and evaluate PDMs using any dataset on a single GPU.

Graph neural networks (GNNs) have gained significant popularity for classification tasks in machine learning, yet their applications to regression problems remain limited. Concurrently, attention mechanisms have emerged as powerful tools in sequential learning tasks. In this paper, we employ GNNs and attention mechanisms to address a classical but challenging nonlinear regression problem: network localization. We propose a novel GNN-based network localization method that achieves exceptional stability and accuracy in the presence of severe non-line-of-sight (NLOS) propagations, while eliminating the need for laborious offline calibration or NLOS identification. Extensive experimental results validate the effectiveness and high accuracy of our GNN-based localization model, particularly in challenging NLOS scenarios. However, the proposed GNN-based model exhibits limited flexibility, and its accuracy is highly sensitive to a specific hyperparameter that determines the graph structure. To address the limitations and extend the applicability of the GNN-based model to real scenarios, we introduce two attentional graph neural networks (AGNNs) that offer enhanced flexibility and the ability to automatically learn the optimal hyperparameter for each node. Experimental results confirm that the AGNN models are able to enhance localization accuracy, providing a promising solution for real-world applications. We also provide some analyses of the improved performance achieved by the AGNN models from the perspectives of dynamic attention and signal denoising characteristics.

With the rise of powerful pre-trained vision-language models like CLIP, it becomes essential to investigate ways to adapt these models to downstream datasets. A recently proposed method named Context Optimization (CoOp) introduces the concept of prompt learning -- a recent trend in NLP -- to the vision domain for adapting pre-trained vision-language models. Specifically, CoOp turns context words in a prompt into a set of learnable vectors and, with only a few labeled images for learning, can achieve huge improvements over intensively-tuned manual prompts. In our study we identify a critical problem of CoOp: the learned context is not generalizable to wider unseen classes within the same dataset, suggesting that CoOp overfits base classes observed during training. To address the problem, we propose Conditional Context Optimization (CoCoOp), which extends CoOp by further learning a lightweight neural network to generate for each image an input-conditional token (vector). Compared to CoOp's static prompts, our dynamic prompts adapt to each instance and are thus less sensitive to class shift. Extensive experiments show that CoCoOp generalizes much better than CoOp to unseen classes, even showing promising transferability beyond a single dataset; and yields stronger domain generalization performance as well. Code is available at //github.com/KaiyangZhou/CoOp.

Few-shot Knowledge Graph (KG) completion is a focus of current research, where each task aims at querying unseen facts of a relation given its few-shot reference entity pairs. Recent attempts solve this problem by learning static representations of entities and references, ignoring their dynamic properties, i.e., entities may exhibit diverse roles within task relations, and references may make different contributions to queries. This work proposes an adaptive attentional network for few-shot KG completion by learning adaptive entity and reference representations. Specifically, entities are modeled by an adaptive neighbor encoder to discern their task-oriented roles, while references are modeled by an adaptive query-aware aggregator to differentiate their contributions. Through the attention mechanism, both entities and references can capture their fine-grained semantic meanings, and thus render more expressive representations. This will be more predictive for knowledge acquisition in the few-shot scenario. Evaluation in link prediction on two public datasets shows that our approach achieves new state-of-the-art results with different few-shot sizes.

Graph Neural Networks (GNNs) have recently been used for node and graph classification tasks with great success, but GNNs model dependencies among the attributes of nearby neighboring nodes rather than dependencies among observed node labels. In this work, we consider the task of inductive node classification using GNNs in supervised and semi-supervised settings, with the goal of incorporating label dependencies. Because current GNNs are not universal (i.e., most-expressive) graph representations, we propose a general collective learning approach to increase the representation power of any existing GNN. Our framework combines ideas from collective classification with self-supervised learning, and uses a Monte Carlo approach to sampling embeddings for inductive learning across graphs. We evaluate performance on five real-world network datasets and demonstrate consistent, significant improvement in node classification accuracy, for a variety of state-of-the-art GNNs.

北京阿比特科技有限公司