One class of statistical hypothesis testing procedures is the indisputable equivalence tests, whose main objective is to establish practical equivalence rather than the usual statistical significant difference. These hypothesis tests are prone in bioequivalence studies, where one would wish to show that, for example, an existing drug and a new one under development have the same therapeutic effect. In this article, we consider a two-stage randomized (RAND2) p-value utilizing the uniformly most powerful (UMP) p-value in the first stage when multiple two-one-sided hypotheses are of interest. We investigate the behavior of the distribution functions of the two p-values when there are changes in the boundaries of the null or alternative hypothesis or when the chosen parameters are too close to these boundaries. We also consider the behavior of the power functions to an increase in sample size. Specifically, we investigate the level of conservativity to the sample sizes to see if we control the type I error rate when using either of the two p-values for any sample size. In multiple tests, we evaluate the performance of the two p-values in estimating the proportion of true null hypotheses. We conduct a family-wise error rate control using an adaptive Bonferroni procedure with a plug-in estimator to account for the multiplicity that arises from the multiple hypotheses under consideration. We verify the various claims in this research using simulation study and real-world data analysis.
Modern regression applications can involve hundreds or thousands of variables which motivates the use of variable selection methods. Bayesian variable selection defines a posterior distribution on the possible subsets of the variables (which are usually termed models) to express uncertainty about which variables are strongly linked to the response. This can be used to provide Bayesian model averaged predictions or inference, and to understand the relative importance of different variables. However, there has been little work on meaningful representations of this uncertainty beyond first order summaries. We introduce Cartesian credible sets to address this gap. The elements of these sets are formed by concatenating sub-models defined on each block of a partition of the variables. Investigating these sub-models allow us to understand whether the models in the Cartesian credible set always/never/sometimes include a particular variable or group of variables and provide a useful summary of model uncertainty. We introduce methods to find these sets that emphasize ease of understanding. The potential of the method is illustrated on regression problems with both small and large numbers of variables.
Diffusion probabilistic models (DPMs) have rapidly evolved to be one of the predominant generative models for the simulation of synthetic data, for instance, for computer vision, audio, natural language processing, or biomolecule generation. Here, we propose using DPMs for the generation of synthetic individual location trajectories (ILTs) which are sequences of variables representing physical locations visited by individuals. ILTs are of major importance in mobility research to understand the mobility behavior of populations and to ultimately inform political decision-making. We represent ILTs as multi-dimensional categorical random variables and propose to model their joint distribution using a continuous DPM by first applying the diffusion process in a continuous unconstrained space and then mapping the continuous variables into a discrete space. We demonstrate that our model can synthesize realistic ILPs by comparing conditionally and unconditionally generated sequences to real-world ILPs from a GNSS tracking data set which suggests the potential use of our model for synthetic data generation, for example, for benchmarking models used in mobility research.
Local variable selection aims to discover localized effects by assessing the impact of covariates on outcomes within specific regions defined by other covariates. We outline some challenges of local variable selection in the presence of non-linear relationships and model misspecification. Specifically, we highlight a potential drawback of common semi-parametric methods: even slight model misspecification can result in a high rate of false positives. To address these shortcomings, we propose a methodology based on orthogonal cut splines that achieves consistent local variable selection in high-dimensional scenarios. Our approach offers simplicity, handles both continuous and discrete covariates, and provides theory for high-dimensional covariates and model misspecification. We discuss settings with either independent or dependent data. Our proposal allows including adjustment covariates that do not undergo selection, enhancing flexibility in modeling complex scenarios. We illustrate its application in simulation studies with both independent and functional data, as well as with two real datasets. One dataset evaluates salary gaps associated with discrimination factors at different ages, while the other examines the effects of covariates on brain activation over time. The approach is implemented in the R package mombf.
The main reason for query model's prominence in complexity theory and quantum computing is the presence of concrete lower bounding techniques: polynomial and adversary method. There have been considerable efforts to give lower bounds using these methods, and to compare/relate them with other measures based on the decision tree. We explore the value of these lower bounds on quantum query complexity and their relation with other decision tree based complexity measures for the class of symmetric functions, arguably one of the most natural and basic sets of Boolean functions. We show an explicit construction for the dual of the positive adversary method and also of the square root of private coin certificate game complexity for any total symmetric function. This shows that the two values can't be distinguished for any symmetric function. Additionally, we show that the recently introduced measure of spectral sensitivity gives the same value as both positive adversary and approximate degree for every total symmetric Boolean function. Further, we look at the quantum query complexity of Gap Majority, a partial symmetric function. It has gained importance recently in regard to understanding the composition of randomized query complexity. We characterize the quantum query complexity of Gap Majority and show a lower bound on noisy randomized query complexity (Ben-David and Blais, FOCS 2020) in terms of quantum query complexity. Finally, we study how large certificate complexity and block sensitivity can be as compared to sensitivity for symmetric functions (even up to constant factors). We show tight separations, i.e., give upper bounds on possible separations and construct functions achieving the same.
Fourth-order variational inequalities are encountered in various scientific and engineering disciplines, including elliptic optimal control problems and plate obstacle problems. In this paper, we consider additive Schwarz methods for solving fourth-order variational inequalities. Based on a unified framework of various finite element methods for fourth-order variational inequalities, we develop one- and two-level additive Schwarz methods. We prove that the two-level method is scalable in the sense that the convergence rate of the method depends on $H/h$ and $H/\delta$ only, where $h$ and $H$ are the typical diameters of an element and a subdomain, respectively, and $\delta$ measures the overlap among the subdomains. This proof relies on a new nonlinear positivity-preserving coarse interpolation operator, the construction of which was previously unknown. To the best of our knowledge, this analysis represents the first investigation into the scalability of the two-level additive Schwarz method for fourth-order variational inequalities. Our theoretical results are verified by numerical experiments.
Boundary value problems involving elliptic PDEs such as the Laplace and the Helmholtz equations are ubiquitous in mathematical physics and engineering. Many such problems can be alternatively formulated as integral equations that are mathematically more tractable. However, an integral-equation formulation poses a significant computational challenge: solving large dense linear systems that arise upon discretization. In cases where iterative methods converge rapidly, existing methods that draw on fast summation schemes such as the Fast Multipole Method are highly efficient and well-established. More recently, linear complexity direct solvers that sidestep convergence issues by directly computing an invertible factorization have been developed. However, storage and computation costs are high, which limits their ability to solve large-scale problems in practice. In this work, we introduce a distributed-memory parallel algorithm based on an existing direct solver named ``strong recursive skeletonization factorization.'' Specifically, we apply low-rank compression to certain off-diagonal matrix blocks in a way that minimizes computation and data movement. Compared to iterative algorithms, our method is particularly suitable for problems involving ill-conditioned matrices or multiple right-hand sides. Large-scale numerical experiments are presented to show the performance of our Julia implementation.
Binary field extensions are fundamental to many applications, such as multivariate public key cryptography, code-based cryptography, and error-correcting codes. Their implementation requires a foundation in number theory and algebraic geometry and necessitates the utilization of efficient bases. The continuous increase in the power of computation, and the design of new (quantum) computers increase the threat to the security of systems and impose increasingly demanding encryption standards with huge polynomial or extension degrees. For cryptographic purposes or other common implementations of finite fields arithmetic, it is essential to explore a wide range of implementations with diverse bases. Unlike some bases, polynomial and Gaussian normal bases are well-documented and widely employed. In this paper, we explore other forms of bases of $\mathbb{F}_{2^n}$ over $\mathbb{F}_2$ to demonstrate efficient implementation of operations within different ranges. To achieve this, we leverage results on fast computations and elliptic periods introduced by Couveignes and Lercier, and subsequently expanded upon by Ezome and Sall. This leads to the establishment of new tables for efficient computation over binary fields.
The aim of this study is to propose and evaluate an advanced ransomware detection and classification method that combines a Stacked Autoencoder (SAE) for precise feature selection with a Long Short Term Memory (LSTM) classifier to enhance ransomware stratification accuracy. The proposed approach involves thorough pre processing of the UGRansome dataset and training an unsupervised SAE for optimal feature selection or fine tuning via supervised learning to elevate the LSTM model's classification capabilities. The study meticulously analyzes the autoencoder's learned weights and activations to identify essential features for distinguishing ransomware families from other malware and creates a streamlined feature set for precise classification. Extensive experiments, including up to 400 epochs and varying learning rates, are conducted to optimize the model's performance. The results demonstrate the outstanding performance of the SAE-LSTM model across all ransomware families, boasting high precision, recall, and F1 score values that underscore its robust classification capabilities. Furthermore, balanced average scores affirm the proposed model's ability to generalize effectively across various malware types. The proposed model achieves an exceptional 99% accuracy in ransomware classification, surpassing the Extreme Gradient Boosting (XGBoost) algorithm primarily due to its effective SAE feature selection mechanism. The model also demonstrates outstanding performance in identifying signature attacks, achieving a 98% accuracy rate.
The broad class of multivariate unified skew-normal (SUN) distributions has been recently shown to possess fundamental conjugacy properties. When used as priors for the vector of parameters in general probit, tobit, and multinomial probit models, these distributions yield posteriors that still belong to the SUN family. Although such a core result has led to important advancements in Bayesian inference and computation, its applicability beyond likelihoods associated with fully-observed, discretized, or censored realizations from multivariate Gaussian models remains yet unexplored. This article covers such an important gap by proving that the wider family of multivariate unified skew-elliptical (SUE) distributions, which extends SUNs to more general perturbations of elliptical densities, guarantees conjugacy for broader classes of models, beyond those relying on fully-observed, discretized or censored Gaussians. Such a result leverages the closure under linear combinations, conditioning and marginalization of SUE to prove that such a family is conjugate to the likelihood induced by general multivariate regression models for fully-observed, censored or dichotomized realizations from skew-elliptical distributions. This advancement substantially enlarges the set of models that enable conjugate Bayesian inference to general formulations arising from elliptical and skew-elliptical families, including the multivariate Student's t and skew-t, among others.
We consider the problem of sketching a set valuation function, which is defined as the expectation of a valuation function of independent random item values. We show that for monotone subadditive or submodular valuation functions satisfying a weak homogeneity condition, or certain other conditions, there exist discretized distributions of item values with $O(k\log(k))$ support sizes that yield a sketch valuation function which is a constant-factor approximation, for any value query for a set of items of cardinality less than or equal to $k$. The discretized distributions can be efficiently computed by an algorithm for each item's value distribution separately. Our results hold under conditions that accommodate a wide range of valuation functions arising in applications, such as the value of a team corresponding to the best performance of a team member, constant elasticity of substitution production functions exhibiting diminishing returns used in economics and consumer theory, and others. Sketch valuation functions are particularly valuable for finding approximate solutions to optimization problems such as best set selection and welfare maximization. They enable computationally efficient evaluation of approximate value oracle queries and provide an approximation guarantee for the underlying optimization problem.