亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In many fields of experimental science, papers that failed to replicate continue to be cited as a result of the poor discoverability of replication studies. As a first step to creating a system that automatically finds replication studies for a given paper, 334 replication studies and 344 replicated studies were collected. Replication studies could be identified in the dataset based on text content at a higher rate than chance (AUROC = 0.886). Additionally, successful replication studies could be distinguished from failed replication studies at a higher rate than chance (AUROC = 0.664).

相關內容

Machine learning algorithms are heavily relied on to understand the vast amounts of data from high-energy particle collisions at the CERN Large Hadron Collider (LHC). The data from such collision events can naturally be represented with graph structures. Therefore, deep geometric methods, such as graph neural networks (GNNs), have been leveraged for various data analysis tasks in high-energy physics. One typical task is jet tagging, where jets are viewed as point clouds with distinct features and edge connections between their constituent particles. The increasing size and complexity of the LHC particle datasets, as well as the computational models used for their analysis, greatly motivate the development of alternative fast and efficient computational paradigms such as quantum computation. In addition, to enhance the validity and robustness of deep networks, one can leverage the fundamental symmetries present in the data through the use of invariant inputs and equivariant layers. In this paper, we perform a fair and comprehensive comparison between classical graph neural networks (GNNs) and equivariant graph neural networks (EGNNs) and their quantum counterparts: quantum graph neural networks (QGNNs) and equivariant quantum graph neural networks (EQGNN). The four architectures were benchmarked on a binary classification task to classify the parton-level particle initiating the jet. Based on their AUC scores, the quantum networks were shown to outperform the classical networks. However, seeing the computational advantage of the quantum networks in practice may have to wait for the further development of quantum technology and its associated APIs.

This paper begins by reviewing numerous theoretical advancements in the field of multivariate splines, primarily contributed by Professor Larry L. Schumaker. These foundational results have paved the way for a wide range of applications and computational techniques. The paper then proceeds to highlight various practical applications of multivariate splines. These include scattered data fitting and interpolation, the construction of smooth curves and surfaces, and the numerical solutions of various partial differential equations, encompassing both linear and nonlinear PDEs. Beyond these conventional and well-established uses, the paper introduces a novel application of multivariate splines in function value denoising. This innovative approach facilitates the creation of LKB splines, which are instrumental in approximating high-dimensional functions and effectively circumventing the curse of dimensionality.

Causal inference problems have remained an important research topic over the past several decades due to their general applicability in assessing a treatment effect in many different real-world settings. In this paper, we propose two inferential procedures on the average treatment effect (ATE) through a two-sample pseudo-empirical likelihood (PEL) approach. The first procedure uses the estimated propensity scores for the formulation of the PEL function, and the resulting maximum PEL estimator of the ATE is equivalent to the inverse probability weighted estimator discussed in the literature. Our focus in this scenario is on the PEL ratio statistic and establishing its theoretical properties. The second procedure incorporates outcome regression models for PEL inference through model-calibration constraints, and the resulting maximum PEL estimator of the ATE is doubly robust. Our main theoretical result in this case is the establishment of the asymptotic distribution of the PEL ratio statistic. We also propose a bootstrap method for constructing PEL ratio confidence intervals for the ATE to bypass the scaling constant which is involved in the asymptotic distribution of the PEL ratio statistic but is very difficult to calculate. Finite sample performances of our proposed methods with comparisons to existing ones are investigated through simulation studies.

The prevalence of the powerful multilingual models, such as Whisper, has significantly advanced the researches on speech recognition. However, these models often struggle with handling the code-switching setting, which is essential in multilingual speech recognition. Recent studies have attempted to address this setting by separating the modules for different languages to ensure distinct latent representations for languages. Some other methods considered the switching mechanism based on language identification. In this study, a new attention-guided adaptation is proposed to conduct parameter-efficient learning for bilingual ASR. This method selects those attention heads in a model which closely express language identities and then guided those heads to be correctly attended with their corresponding languages. The experiments on the Mandarin-English code-switching speech corpus show that the proposed approach achieves a 14.2% mixed error rate, surpassing state-of-the-art method, where only 5.6% additional parameters over Whisper are trained.

Aspect sentiment quad prediction (ASQP) aims to predict the quad sentiment elements for a given sentence, which is a critical task in the field of aspect-based sentiment analysis. However, the data imbalance issue has not received sufficient attention in ASQP task. In this paper, we divide the issue into two-folds, quad-pattern imbalance and aspect-category imbalance, and propose an Adaptive Data Augmentation (ADA) framework to tackle the imbalance issue. Specifically, a data augmentation process with a condition function adaptively enhances the tail quad patterns and aspect categories, alleviating the data imbalance in ASQP. Following previous studies, we also further explore the generative framework for extracting complete quads by introducing the category prior knowledge and syntax-guided decoding target. Experimental results demonstrate that data augmentation for imbalance in ASQP task can improve the performance, and the proposed ADA method is superior to naive data oversampling.

Software engineering is a domain characterized by intricate decision-making processes, often relying on nuanced intuition and consultation. Recent advancements in deep learning have started to revolutionize software engineering practices through elaborate designs implemented at various stages of software development. In this paper, we present an innovative paradigm that leverages large language models (LLMs) throughout the entire software development process, streamlining and unifying key processes through natural language communication, thereby eliminating the need for specialized models at each phase. At the core of this paradigm lies ChatDev, a virtual chat-powered software development company that mirrors the established waterfall model, meticulously dividing the development process into four distinct chronological stages: designing, coding, testing, and documenting. Each stage engages a team of agents, such as programmers, code reviewers, and test engineers, fostering collaborative dialogue and facilitating a seamless workflow. The chat chain acts as a facilitator, breaking down each stage into atomic subtasks. This enables dual roles, allowing for proposing and validating solutions through context-aware communication, leading to efficient resolution of specific subtasks. The instrumental analysis of ChatDev highlights its remarkable efficacy in software generation, enabling the completion of the entire software development process in under seven minutes at a cost of less than one dollar. It not only identifies and alleviates potential vulnerabilities but also rectifies potential hallucinations while maintaining commendable efficiency and cost-effectiveness. The potential of ChatDev unveils fresh possibilities for integrating LLMs into the realm of software development.

The adaptive processing of structured data is a long-standing research topic in machine learning that investigates how to automatically learn a mapping from a structured input to outputs of various nature. Recently, there has been an increasing interest in the adaptive processing of graphs, which led to the development of different neural network-based methodologies. In this thesis, we take a different route and develop a Bayesian Deep Learning framework for graph learning. The dissertation begins with a review of the principles over which most of the methods in the field are built, followed by a study on graph classification reproducibility issues. We then proceed to bridge the basic ideas of deep learning for graphs with the Bayesian world, by building our deep architectures in an incremental fashion. This framework allows us to consider graphs with discrete and continuous edge features, producing unsupervised embeddings rich enough to reach the state of the art on several classification tasks. Our approach is also amenable to a Bayesian nonparametric extension that automatizes the choice of almost all model's hyper-parameters. Two real-world applications demonstrate the efficacy of deep learning for graphs. The first concerns the prediction of information-theoretic quantities for molecular simulations with supervised neural models. After that, we exploit our Bayesian models to solve a malware-classification task while being robust to intra-procedural code obfuscation techniques. We conclude the dissertation with an attempt to blend the best of the neural and Bayesian worlds together. The resulting hybrid model is able to predict multimodal distributions conditioned on input graphs, with the consequent ability to model stochasticity and uncertainty better than most works. Overall, we aim to provide a Bayesian perspective into the articulated research field of deep learning for graphs.

Mining graph data has become a popular research topic in computer science and has been widely studied in both academia and industry given the increasing amount of network data in the recent years. However, the huge amount of network data has posed great challenges for efficient analysis. This motivates the advent of graph representation which maps the graph into a low-dimension vector space, keeping original graph structure and supporting graph inference. The investigation on efficient representation of a graph has profound theoretical significance and important realistic meaning, we therefore introduce some basic ideas in graph representation/network embedding as well as some representative models in this chapter.

Embedding entities and relations into a continuous multi-dimensional vector space have become the dominant method for knowledge graph embedding in representation learning. However, most existing models ignore to represent hierarchical knowledge, such as the similarities and dissimilarities of entities in one domain. We proposed to learn a Domain Representations over existing knowledge graph embedding models, such that entities that have similar attributes are organized into the same domain. Such hierarchical knowledge of domains can give further evidence in link prediction. Experimental results show that domain embeddings give a significant improvement over the most recent state-of-art baseline knowledge graph embedding models.

Benefit from the quick development of deep learning techniques, salient object detection has achieved remarkable progresses recently. However, there still exists following two major challenges that hinder its application in embedded devices, low resolution output and heavy model weight. To this end, this paper presents an accurate yet compact deep network for efficient salient object detection. More specifically, given a coarse saliency prediction in the deepest layer, we first employ residual learning to learn side-output residual features for saliency refinement, which can be achieved with very limited convolutional parameters while keep accuracy. Secondly, we further propose reverse attention to guide such side-output residual learning in a top-down manner. By erasing the current predicted salient regions from side-output features, the network can eventually explore the missing object parts and details which results in high resolution and accuracy. Experiments on six benchmark datasets demonstrate that the proposed approach compares favorably against state-of-the-art methods, and with advantages in terms of simplicity, efficiency (45 FPS) and model size (81 MB).

北京阿比特科技有限公司