In practice, non-destructive testing (NDT) procedures tend to consider experiments (and their respective models) as distinct, conducted in isolation and associated with independent data. In contrast, this work looks to capture the interdependencies between acoustic emission (AE) experiments (as meta-models) and then use the resulting functions to predict the model hyperparameters for previously unobserved systems. We utilise a Bayesian multilevel approach (similar to deep Gaussian Processes) where a higher level meta-model captures the inter-task relationships. Our key contribution is how knowledge of the experimental campaign can be encoded between tasks as well as within tasks. We present an example of AE time-of-arrival mapping for source localisation, to illustrate how multilevel models naturally lend themselves to representing aggregate systems in engineering. We constrain the meta-model based on domain knowledge, then use the inter-task functions for transfer learning, predicting hyperparameters for models of previously unobserved experiments (for a specific design).
Local reconstruction analysis (LRA) is a powerful and flexible technique to study images reconstructed from discrete generalized Radon transform (GRT) data, $g=\mathcal R f$. The main idea of LRA is to obtain a simple formula to accurately approximate an image, $f_\epsilon(x)$, reconstructed from discrete data $g(y_j)$ in an $\epsilon$-neighborhood of a point, $x_0$. The points $y_j$ lie on a grid with step size of order $\epsilon$ in each direction. In this paper we study an iterative reconstruction algorithm, which consists of minimizing a quadratic cost functional. The cost functional is the sum of a data fidelity term and a Tikhonov regularization term. The function $f$ to be reconstructed has a jump discontinuity across a smooth surface $\mathcal S$. Fix a point $x_0\in\mathcal S$ and any $A>0$. The main result of the paper is the computation of the limit $\Delta F_0(\check x;x_0):=\lim_{\epsilon\to0}(f_\epsilon(x_0+\epsilon\check x)-f_\epsilon(x_0))$, where $f_\epsilon$ is the solution to the minimization problem and $|\check x|\le A$. A numerical experiment with a circular GRT demonstrates that $\Delta F_0(\check x;x_0)$ accurately approximates the actual reconstruction obtained by the cost functional minimization.
Despite outstanding processes in many tasks, Large Language Models (LLMs) still lack accuracy when dealing with highly technical domains. Especially, telecommunications (telco) is a particularly challenging domain due the large amount of lexical, semantic and conceptual peculiarities. Yet, this domain holds many valuable use cases, directly linked to industrial needs. Hence, this paper studies how LLMs can be adapted to the telco domain. It reports our effort to (i) collect a massive corpus of domain-specific data (800M tokens, 80K instructions), (ii) perform adaptation using various methodologies, and (iii) benchmark them against larger generalist models in downstream tasks that require extensive knowledge of telecommunications. Our experiments on Llama-2-7b show that domain-adapted models can challenge the large generalist models. They also suggest that adaptation can be restricted to a unique instruction-tuning step, dicarding the need for any fine-tuning on raw texts beforehand.
Accelerated failure time (AFT) models are frequently used to model survival data, providing a direct quantification of the relationship between event times and covariates. These models allow for the acceleration or deceleration of failure times through a multiplicative factor that accounts for the effect of covariates. While existing literature provides numerous methods for fitting AFT models with time-fixed covariates, adapting these approaches to scenarios involving both time-varying covariates and partly interval-censored data remains challenging. Motivated by a randomised clinical trial dataset on advanced melanoma patients, we propose a maximum penalised likelihood approach for fitting a semiparametric AFT model to survival data with partly interval-censored failure times. This method also accommodates both time-fixed and time-varying covariates. We utilise Gaussian basis functions to construct a smooth approximation of the non-parametric baseline hazard and fit the model using a constrained optimisation approach. The effectiveness of our method is demonstrated through extensive simulations. Finally, we illustrate the relevance of our approach by applying it to a dataset from a randomised clinical trial involving patients with advanced melanoma.
Model misspecification analysis strategies, such as anomaly detection, model validation, and model comparison are a key component of scientific model development. Over the last few years, there has been a rapid rise in the use of simulation-based inference (SBI) techniques for Bayesian parameter estimation, applied to increasingly complex forward models. To move towards fully simulation-based analysis pipelines, however, there is an urgent need for a comprehensive simulation-based framework for model misspecification analysis. In this work, we provide a solid and flexible foundation for a wide range of model discrepancy analysis tasks, using distortion-driven model misspecification tests. From a theoretical perspective, we introduce the statistical framework built around performing many hypothesis tests for distortions of the simulation model. We also make explicit analytic connections to classical techniques: anomaly detection, model validation, and goodness-of-fit residual analysis. Furthermore, we introduce an efficient self-calibrating training algorithm that is useful for practitioners. We demonstrate the performance of the framework in multiple scenarios, making the connection to classical results where they are valid. Finally, we show how to conduct such a distortion-driven model misspecification test for real gravitational wave data, specifically on the event GW150914.
Machine learning interatomic potentials (MLIPs) often neglect long-range interactions, such as electrostatic and dispersion forces. In this work, we introduce a straightforward and efficient method to account for long-range interactions by learning a latent variable from local atomic descriptors and applying an Ewald summation to this variable. We demonstrate that in systems including charged and polar molecular dimers, bulk water, and water-vapor interface, standard short-ranged MLIPs can lead to unphysical predictions even when employing message passing. The long-range models effectively eliminate these artifacts, with only about twice the computational cost of short-range MLIPs.
We propose a method utilizing physics-informed neural networks (PINNs) to solve Poisson equations that serve as control variates in the computation of transport coefficients via fluctuation formulas, such as the Green--Kubo and generalized Einstein-like formulas. By leveraging approximate solutions to the Poisson equation constructed through neural networks, our approach significantly reduces the variance of the estimator at hand. We provide an extensive numerical analysis of the estimators and detail a methodology for training neural networks to solve these Poisson equations. The approximate solutions are then incorporated into Monte Carlo simulations as effective control variates, demonstrating the suitability of the method for moderately high-dimensional problems where fully deterministic solutions are computationally infeasible.
We present a demonstration of a large language model engaging in alignment faking: selectively complying with its training objective in training to prevent modification of its behavior out of training. First, we give Claude 3 Opus a system prompt stating it is being trained to answer all queries, even harmful ones, which conflicts with its prior training to refuse such queries. To allow the model to infer when it is in training, we say it will be trained only on conversations with free users, not paid users. We find the model complies with harmful queries from free users 14% of the time, versus almost never for paid users. Explaining this gap, in almost all cases where the model complies with a harmful query from a free user, we observe explicit alignment-faking reasoning, with the model stating it is strategically answering harmful queries in training to preserve its preferred harmlessness behavior out of training. Next, we study a more realistic setting where information about the training process is provided not in a system prompt, but by training on synthetic documents that mimic pre-training data--and observe similar alignment faking. Finally, we study the effect of actually training the model to comply with harmful queries via reinforcement learning, which we find increases the rate of alignment-faking reasoning to 78%, though also increases compliance even out of training. We additionally observe other behaviors such as the model exfiltrating its weights when given an easy opportunity. While we made alignment faking easier by telling the model when and by what criteria it was being trained, we did not instruct the model to fake alignment or give it any explicit goal. As future models might infer information about their training process without being told, our results suggest a risk of alignment faking in future models, whether due to a benign preference--as in this case--or not.
In order to determine an optimal plan for a complex task, one often deals with dynamic and hierarchical relationships between several entities. Traditionally, such problems are tackled with optimal control, which relies on the optimization of cost functions; instead, a recent biologically-motivated proposal casts planning and control as an inference process. Active inference assumes that action and perception are two complementary aspects of life whereby the role of the former is to fulfill the predictions inferred by the latter. In this study, we present a solution, based on active inference, for complex control tasks. The proposed architecture exploits hybrid (discrete and continuous) processing, and it is based on three features: the representation of potential body configurations related to the objects of interest; the use of hierarchical relationships that enable the agent to flexibly expand its body schema for tool use; the definition of potential trajectories related to the agent's intentions, used to infer and plan with dynamic elements at different temporal scales. We evaluate this deep hybrid model on a habitual task: reaching a moving object after having picked a moving tool. We show that the model can tackle the presented task under different conditions. This study extends past work on planning as inference and advances an alternative direction to optimal control.
Not accounting for competing events in survival analysis can lead to biased estimates, as individuals who die from other causes do not have the opportunity to develop the event of interest. Formal definitions and considerations for causal effects in the presence of competing risks have been published, but not for the mediation analysis setting. We propose, for the first time, an approach based on the path-specific effects framework to account for competing risks in longitudinal mediation analysis with time-to-event outcomes. We do so by considering the pathway through the competing event as another mediator, which is nested within our longitudinal mediator of interest. We provide a theoretical formulation and related definitions of the effects of interest based on the mediational g-formula, as well as a detailed description of the algorithm. We also present an application of our algorithm to data from the Strong Heart Study, a prospective cohort of American Indian adults. In this application, we evaluated the mediating role of the blood pressure trajectory (measured during three visits) on the association between arsenic and cadmium, in separate models, with time to cardiovascular disease, accounting for competing risks by death. Identifying the effects through different paths enables us to evaluate the impact of metals on the outcome of interest, as well as through competing risks, more transparently.
Conjugate heat transfer (CHT) analyses are vital for the design of many energy systems. However, high-fidelity CHT numerical simulations are computationally intensive, which limits their applications such as design optimization, where hundreds to thousands of evaluations are required. In this work, we develop a modular deep encoder-decoder hierarchical (DeepEDH) convolutional neural network, a novel deep-learning-based surrogate modeling methodology for computationally intensive CHT analyses. Leveraging convective temperature dependencies, we propose a two-stage temperature prediction architecture that couples velocity and temperature fields. The proposed DeepEDH methodology is demonstrated by modeling the pressure, velocity, and temperature fields for a liquid-cooled cold-plate-based battery thermal management system with variable channel geometry. A computational mesh and CHT formulation of the cold plate is created and solved using the finite element method (FEM), generating a dataset of 1,500 simulations. Our performance analysis covers the impact of the novel architecture, separate DeepEDH models for each field, output geometry masks, multi-stage temperature field predictions, and optimizations of the hyperparameters and architecture. Furthermore, we quantify the influence of the CHT analysis' thermal boundary conditions on surrogate model performance, highlighting improved temperature model performance with higher heat fluxes. Compared to other deep learning neural network surrogate models, such as U-Net and DenseED, the proposed DeepEDH architecture for CHT analyses exhibits up to a 65% enhancement in the coefficient of determination $R^{2}$. (*Due to the notification of arXiv "The Abstract field cannot be longer than 1,920 characters", the appeared Abstract is shortened. For the full Abstract, please download the Article.)