Physics informed neural networks (PINNs) represent a very powerful class of numerical solvers for partial differential equations using deep neural networks, and have been successfully applied to many diverse problems. However, when applying the method to problems involving singularity, e.g., point sources or geometric singularities, the obtained approximations often have low accuracy, due to limited regularity of the exact solution. In this work, we investigate PINNs for solving Poisson equations in polygonal domains with geometric singularities and mixed boundary conditions. We propose a novel singularity enriched PINN (SEPINN), by explicitly incorporating the singularity behavior of the analytic solution, e.g., corner singularity, mixed boundary condition and edge singularities, into the ansatz space, and present a convergence analysis of the scheme. We present extensive numerical simulations in two and three-dimensions to illustrate the efficiency of the method, and also a comparative study with existing neural network based approaches.
Generating mathematical equations from natural language requires an accurate understanding of the relations among math expressions. Existing approaches can be broadly categorized into token-level and expression-level generation. The former treats equations as a mathematical language, sequentially generating math tokens. Expression-level methods generate each expression one by one. However, each expression represents a solving step, and there naturally exist parallel or dependent relations between these steps, which are ignored by current sequential methods. Therefore, we integrate tree structure into the expression-level generation and advocate an expression tree decoding strategy. To generate a tree with expression as its node, we employ a layer-wise parallel decoding strategy: we decode multiple independent expressions (leaf nodes) in parallel at each layer and repeat parallel decoding layer by layer to sequentially generate these parent node expressions that depend on others. Besides, a bipartite matching algorithm is adopted to align multiple predictions with annotations for each layer. Experiments show our method outperforms other baselines, especially for these equations with complex structures.
Grounding navigational commands to linear temporal logic (LTL) leverages its unambiguous semantics for reasoning about long-horizon tasks and verifying the satisfaction of temporal constraints. Existing approaches require training data from the specific environment and landmarks that will be used in natural language to understand commands in those environments. We propose Lang2LTL, a modular system and a software package that leverages large language models (LLMs) to ground temporal navigational commands to LTL specifications in environments without prior language data. We comprehensively evaluate Lang2LTL for five well-defined generalization behaviors. Lang2LTL demonstrates the state-of-the-art ability of a single model to ground navigational commands to diverse temporal specifications in 21 city-scaled environments. Finally, we demonstrate a physical robot using Lang2LTL can follow 52 semantically diverse navigational commands in two indoor environments.
Neural tangent kernels (NTKs) provide a theoretical regime to analyze the learning and generalization behavior of over-parametrized neural networks. For a supervised learning task, the association between the eigenvectors of the NTK kernel and given data (a concept referred to as alignment in this paper) can govern the rate of convergence of gradient descent, as well as generalization to unseen data. Building upon this concept, we investigate NTKs and alignment in the context of graph neural networks (GNNs), where our analysis reveals that optimizing alignment translates to optimizing the graph representation or the graph shift operator in a GNN. Our results further establish the theoretical guarantees on the optimality of the alignment for a two-layer GNN and these guarantees are characterized by the graph shift operator being a function of the cross-covariance between the input and the output data. The theoretical insights drawn from the analysis of NTKs are validated by our experiments focused on a multi-variate time series prediction task for a publicly available dataset. Specifically, they demonstrate that GNNs with cross-covariance as the graph shift operator indeed outperform those that operate on the covariance matrix from only the input data.
We develop a Bayesian inference method for discretely-observed stochastic differential equations (SDEs). Inference is challenging for most SDEs, due to the analytical intractability of the likelihood function. Nevertheless, forward simulation via numerical methods is straightforward, motivating the use of approximate Bayesian computation (ABC). We propose a conditional simulation scheme for SDEs that is based on lookahead strategies for sequential Monte Carlo (SMC) and particle smoothing using backward simulation. This leads to the simulation of trajectories that are consistent with the observed trajectory, thereby increasing the ABC acceptance rate. We additionally employ an invariant neural network, previously developed for Markov processes, to learn the summary statistics function required in ABC. The neural network is incrementally retrained by exploiting an ABC-SMC sampler, which provides new training data at each round. Since the SDE simulation scheme differs from standard forward simulation, we propose a suitable importance sampling correction, which has the added advantage of guiding the parameters towards regions of high posterior density, especially in the first ABC-SMC round. Our approach achieves accurate inference and is about three times faster than standard (forward-only) ABC-SMC. We illustrate our method in four simulation studies, including three examples from the Chan-Karaolyi-Longstaff-Sanders SDE family.
This paper considers the secure aggregation problem for federated learning under an information theoretic cryptographic formulation, where distributed training nodes (referred to as users) train models based on their own local data and a curious-but-honest server aggregates the trained models without retrieving other information about users' local data. Secure aggregation generally contains two phases, namely key sharing phase and model aggregation phase. Due to the common effect of user dropouts in federated learning, the model aggregation phase should contain two rounds, where in the first round the users transmit masked models and, in the second round, according to the identity of surviving users after the first round, these surviving users transmit some further messages to help the server decrypt the sum of users' trained models. The objective of the considered information theoretic formulation is to characterize the capacity region of the communication rates in the two rounds from the users to the server in the model aggregation phase, assuming that key sharing has already been performed offline in prior. In this context, Zhao and Sun completely characterized the capacity region under the assumption that the keys can be arbitrary random variables. More recently, an additional constraint, known as "uncoded groupwise keys," has been introduced. This constraint entails the presence of multiple independent keys within the system, with each key being shared by precisely S users. The capacity region for the information-theoretic secure aggregation problem with uncoded groupwise keys was established in our recent work subject to the condition S > K - U, where K is the number of total users and U is the designed minimum number of surviving users. In this paper we fully characterize of the the capacity region for this problem by proposing a new converse bound and an achievable scheme.
Large Language models (LLMs) possess the capability to engage In-context Learning (ICL) by leveraging a few demonstrations pertaining to a new downstream task as conditions. However, this particular learning paradigm suffers from high instability stemming from substantial variances induced by factors such as the input distribution of selected examples, their ordering, and prompt formats. In this work, we demonstrate that even when all these factors are held constant, the random selection of examples still results in high variance. Consequently, we aim to explore the informative ability of data examples by quantifying the Information Gain (IG) obtained in prediction after observing a given example candidate. Then we propose to sample those with maximum IG. Additionally, we identify the presence of template bias, which can lead to unfair evaluations of IG during the sampling process. To mitigate this bias, we introduce Calibration Before Sampling strategy. The experimental results illustrate that our proposed method can yield an average relative improvement of 14.3% across six classification tasks using three LLMs.
We establish an efficient approximation algorithm for the partition functions of a class of quantum spin systems at low temperature, which can be viewed as stable quantum perturbations of classical spin systems. Our algorithm is based on combining the contour representation of quantum spin systems of this type due to Borgs, Koteck\'y, and Ueltschi with the algorithmic framework developed by Helmuth, Perkins, and Regts, and Borgs et al.
The existence of representative datasets is a prerequisite of many successful artificial intelligence and machine learning models. However, the subsequent application of these models often involves scenarios that are inadequately represented in the data used for training. The reasons for this are manifold and range from time and cost constraints to ethical considerations. As a consequence, the reliable use of these models, especially in safety-critical applications, is a huge challenge. Leveraging additional, already existing sources of knowledge is key to overcome the limitations of purely data-driven approaches, and eventually to increase the generalization capability of these models. Furthermore, predictions that conform with knowledge are crucial for making trustworthy and safe decisions even in underrepresented scenarios. This work provides an overview of existing techniques and methods in the literature that combine data-based models with existing knowledge. The identified approaches are structured according to the categories integration, extraction and conformity. Special attention is given to applications in the field of autonomous driving.
Recently, graph neural networks (GNNs) have revolutionized the field of graph representation learning through effectively learned node embeddings, and achieved state-of-the-art results in tasks such as node classification and link prediction. However, current GNN methods are inherently flat and do not learn hierarchical representations of graphs---a limitation that is especially problematic for the task of graph classification, where the goal is to predict the label associated with an entire graph. Here we propose DiffPool, a differentiable graph pooling module that can generate hierarchical representations of graphs and can be combined with various graph neural network architectures in an end-to-end fashion. DiffPool learns a differentiable soft cluster assignment for nodes at each layer of a deep GNN, mapping nodes to a set of clusters, which then form the coarsened input for the next GNN layer. Our experimental results show that combining existing GNN methods with DiffPool yields an average improvement of 5-10% accuracy on graph classification benchmarks, compared to all existing pooling approaches, achieving a new state-of-the-art on four out of five benchmark data sets.
We introduce a generic framework that reduces the computational cost of object detection while retaining accuracy for scenarios where objects with varied sizes appear in high resolution images. Detection progresses in a coarse-to-fine manner, first on a down-sampled version of the image and then on a sequence of higher resolution regions identified as likely to improve the detection accuracy. Built upon reinforcement learning, our approach consists of a model (R-net) that uses coarse detection results to predict the potential accuracy gain for analyzing a region at a higher resolution and another model (Q-net) that sequentially selects regions to zoom in. Experiments on the Caltech Pedestrians dataset show that our approach reduces the number of processed pixels by over 50% without a drop in detection accuracy. The merits of our approach become more significant on a high resolution test set collected from YFCC100M dataset, where our approach maintains high detection performance while reducing the number of processed pixels by about 70% and the detection time by over 50%.