This paper investigates an interference-aware joint path planning and power allocation mechanism for a cellular-connected unmanned aerial vehicle (UAV) in a sparse suburban environment. The UAV's goal is to fly from an initial point and reach a destination point by moving along the cells to guarantee the required quality of service (QoS). In particular, the UAV aims to maximize its uplink throughput and minimize the level of interference to the ground user equipment (UEs) connected to the neighbor cellular BSs, considering the shortest path and flight resource limitation. Expert knowledge is used to experience the scenario and define the desired behavior for the sake of the agent (i.e., UAV) training. To solve the problem, an apprenticeship learning method is utilized via inverse reinforcement learning (IRL) based on both Q-learning and deep reinforcement learning (DRL). The performance of this method is compared to learning from a demonstration technique called behavioral cloning (BC) using a supervised learning approach. Simulation and numerical results show that the proposed approach can achieve expert-level performance. We also demonstrate that, unlike the BC technique, the performance of our proposed approach does not degrade in unseen situations.
This paper considers the problem of symbol detection in massive multiple-input multiple-output (MIMO) wireless communication systems. We consider hard-thresholding preceeded by two variants of the regularized least squares (RLS) decoder; namely the unconstrained RLS and the RLS with box constraint. For all schemes, we focus on the evaluation of the mean squared error (MSE) and the symbol error probability (SEP) for M-ary pulse amplitude modulation (M-PAM) symbols transmitted over a massive MIMO system when the channel is estimated using linear minimum mean squared error (LMMSE) estimator. Under such circumstances, the channel estimation error is Gaussian which allows for the use of the convex Gaussian min-max theorem (CGMT) to derive asymptotic approximations for the MSE and SER when the system dimensions and the coherence duration grow large with the same pace. The obtained expressions are then leveraged to derive the optimal power distribution between pilot and data under a total transmit energy constraint. In addition, we derive an asymptotic approximation of the goodput for all schemes which is then used to jointly optimize the number of training symbols and their associated power. Numerical results are presented to support the accuracy of the theoretical results.
In this paper, we develop a generic controlled alternate quantum walk model (called CQWM-P) by combining parity-dependent quantum walks with distinct arbitrary memory lengths and then construct a quantum-inspired hash function (called QHFM-P) based on this model. Numerical simulation shows that QHFM-P has near-ideal statistical performance and is on a par with the state-of-the-art hash functions based on discrete quantum walks in terms of sensitivity of hash value to message, diffusion and confusion properties, uniform distribution property, and collision resistance property. Stability test illustrates that the statistical properties of the proposed hash function are robust with respect to the coin parameters, and theoretical analysis indicates that QHFM-P has the same computational complexity as that of its peers.
This paper studies the joint digital self-interference (SI) cancellation and data detection in an orthogonal-frequency-division-multiplexing (OFDM) full-duplex (FD) system, considering the effect of phase noise introduced by the oscillators at both the local transmitter and receiver. In particular, an universal iterative two-stage joint SI cancellation and data detection framework is considered and its performance bound independent of any specific estimation and detection methods is derived. First, the channel and phase noise estimation mean square error (MSE) lower bounds in each iteration are derived by analyzing the Fisher information of the received signal. Then, by substituting the derived MSE lower bound into the SINR expression, which is related to the channel and phase noise estimation MSE, the SINR upper bound in each iteration is computed. Finally, by exploiting the SINR upper bound and the transition information of the detection errors between two adjacent iterations, the universal bit error rate (BER) lower bound for data detection is derived.
This paper introduces a new method of discretization that collocates both endpoints of the domain and enables the complete convergence of the costate variables associated with the Hamilton boundary-value problem. This is achieved through the inclusion of an \emph{exceptional sample} to the roots of the Legendre-Lobatto polynomial, thus promoting the associated differentiation matrix to be full-rank. We study the location of the new sample such that the differentiation matrix is the most robust to perturbations and we prove that this location is also the choice that mitigates the Runge phenomenon associated with polynomial interpolation. Two benchmark problems are successfully implemented in support of our theoretical findings. The new method is observed to converge exponentially with the number of discretization points used.
Spread spectrum multiple access systems demand minimum possible cross-correlation between the sequences within a set of sequences having good auto-correlation properties. Through a connection between generalised Frank sequences and Florentine arrays, we present a family of perfect sequences with low cross-correlation having a larger family size, compared with previous works. In particular, the family size can be equal to the square root of the period when the period of the perfect sequences is even. In contrast, the number of the perfect sequences of even period with low cross-correlation is equal to one in all previous works.
It remains an open problem to find the optimal configuration of phase shifts under the discrete constraint for intelligent reflecting surface (IRS) in polynomial time. The above problem is widely believed to be difficult because it is not linked to any known combinatorial problems that can be solved efficiently. The branch-and-bound algorithms and the approximation algorithms constitute the best results in this area. Nevertheless, this work shows that the global optimum can actually be reached in linear time on average in terms of the number of reflective elements (REs) of IRS. The main idea is to geometrically interpret the discrete beamforming problem as choosing the optimal point on the unit circle. Although the number of possible combinations of phase shifts grows exponentially with the number of REs, it turns out that there are only a linear number of circular arcs that possibly contain the optimal point. Furthermore, the proposed algorithm can be viewed as a novel approach to a special case of the discrete quadratic program (QP).
Our work presents a novel approach to shape optimization, that has the twofold objective to improve the efficiency of global optimization algorithms while promoting the generation of high-quality designs during the optimization process free of geometrical anomalies. This is accomplished by reducing the number of the original design variables defining a new reduced subspace where the geometrical variance is maximized and modeling the underlying generative process of the data via probabilistic linear latent variable models such as Factor Analysis and Probabilistic Principal Component Analysis. We show that the data follows approximately a Gaussian distribution when the shape modification method is linear and the design variables are sampled uniformly at random, due to the direct application of the central limit theorem. The model uncertainty is measured in terms of Mahalanobis distance, and the paper demonstrates that anomalous designs tend to exhibit a high value of this metric. This enables the definition of a new optimization model where anomalous geometries are penalized and consequently avoided during the optimization loop. The procedure is demonstrated for hull shape optimization of the DTMB 5415 model, extensively used as an international benchmark for shape optimization problems. The global optimization routine is carried out using Bayesian Optimization and the DIRECT algorithm. From the numerical results, the new framework improves the convergence of global optimization algorithms, while only designs with high-quality geometrical features are generated through the optimization routine thereby avoiding the wastage of precious computationally expensive simulations.
This paper deals with the Boolean-based analysis of a prominent class of non-repairable coherent multistate systems with independent nonidentical multistate components. This class of systems is represented by a multistate coherent truly threshold system of several states, which is not necessarily binary-imaged. The paper represents such a system via Boolean expressions of system success or system failure at each non-zero level, which are in the form of minimal sop formulas, or disjoint sop formulas. These are expressions that are directly convertible to expected values. Several map representations are also offered, including a single multi-value Karnaugh map.
Deep reinforcement learning algorithms can perform poorly in real-world tasks due to the discrepancy between source and target environments. This discrepancy is commonly viewed as the disturbance in transition dynamics. Many existing algorithms learn robust policies by modeling the disturbance and applying it to source environments during training, which usually requires prior knowledge about the disturbance and control of simulators. However, these algorithms can fail in scenarios where the disturbance from target environments is unknown or is intractable to model in simulators. To tackle this problem, we propose a novel model-free actor-critic algorithm -- namely, state-conservative policy optimization (SCPO) -- to learn robust policies without modeling the disturbance in advance. Specifically, SCPO reduces the disturbance in transition dynamics to that in state space and then approximates it by a simple gradient-based regularizer. The appealing features of SCPO include that it is simple to implement and does not require additional knowledge about the disturbance or specially designed simulators. Experiments in several robot control tasks demonstrate that SCPO learns robust policies against the disturbance in transition dynamics.
Detecting carried objects is one of the requirements for developing systems to reason about activities involving people and objects. We present an approach to detect carried objects from a single video frame with a novel method that incorporates features from multiple scales. Initially, a foreground mask in a video frame is segmented into multi-scale superpixels. Then the human-like regions in the segmented area are identified by matching a set of extracted features from superpixels against learned features in a codebook. A carried object probability map is generated using the complement of the matching probabilities of superpixels to human-like regions and background information. A group of superpixels with high carried object probability and strong edge support is then merged to obtain the shape of the carried object. We applied our method to two challenging datasets, and results show that our method is competitive with or better than the state-of-the-art.