亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper develops a general asymptotic theory of local polynomial (LP) regression for spatial data observed at irregularly spaced locations in a sampling region $R_n \subset \mathbb{R}^d$. We adopt a stochastic sampling design that can generate irregularly spaced sampling sites in a flexible manner including both pure increasing and mixed increasing domain frameworks. We first introduce a nonparametric regression model for spatial data defined on $\mathbb{R}^d$ and then establish the asymptotic normality of LP estimators with general order $p \geq 1$. We also propose methods for constructing confidence intervals and establishing uniform convergence rates of LP estimators. Our dependence structure conditions on the underlying processes cover a wide class of random fields such as L\'evy-driven continuous autoregressive moving average random fields. As an application of our main results, we discuss a two-sample testing problem for mean functions and their partial derivatives.

相關內容

We present a study on asymptotically compatible Galerkin discretizations for a class of parametrized nonlinear variational problems. The abstract analytical framework is based on variational convergence, or Gamma-convergence. We demonstrate the broad applicability of the theoretical framework by developing asymptotically compatible finite element discretizations of some representative nonlinear nonlocal variational problems on a bounded domain. These include nonlocal nonlinear problems with classically-defined, local boundary constraints through heterogeneous localization at the boundary, as well as nonlocal problems posed on parameter-dependent domains.

In 2012 Chen and Singer introduced the notion of discrete residues for rational functions as a complete obstruction to rational summability. More explicitly, for a given rational function f(x), there exists a rational function g(x) such that f(x) = g(x+1) - g(x) if and only if every discrete residue of f(x) is zero. Discrete residues have many important further applications beyond summability: to creative telescoping problems, thence to the determination of (differential-)algebraic relations among hypergeometric sequences, and subsequently to the computation of (differential) Galois groups of difference equations. However, the discrete residues of a rational function are defined in terms of its complete partial fraction decomposition, which makes their direct computation impractical due to the high complexity of completely factoring arbitrary denominator polynomials into linear factors. We develop a factorization-free algorithm to compute discrete residues of rational functions, relying only on gcd computations and linear algebra.

This paper studies the convergence of a spatial semidiscretization of a three-dimensional stochastic Allen-Cahn equation with multiplicative noise. For non-smooth initial values, the regularity of the mild solution is investigated, and an error estimate is derived with the spatial $ L^2 $-norm. For smooth initial values, two error estimates with the general spatial $ L^q $-norms are established.

In this paper, we study the Boltzmann equation with uncertainties and prove that the spectral convergence of the semi-discretized numerical system holds in a combined velocity and random space, where the Fourier-spectral method is applied for approximation in the velocity space whereas the generalized polynomial chaos (gPC)-based stochastic Galerkin (SG) method is employed to discretize the random variable. Our proof is based on a delicate energy estimate for showing the well-posedness of the numerical solution as well as a rigorous control of its negative part in our well-designed functional space that involves high-order derivatives of both the velocity and random variables. This paper rigorously justifies the statement proposed in [Remark 4.4, J. Hu and S. Jin, J. Comput. Phys., 315 (2016), pp. 150-168].

Continuous-time algebraic Riccati equations can be found in many disciplines in different forms. In the case of small-scale dense coefficient matrices, stabilizing solutions can be computed to all possible formulations of the Riccati equation. This is not the case when it comes to large-scale sparse coefficient matrices. In this paper, we provide a reformulation of the Newton-Kleinman iteration scheme for continuous-time algebraic Riccati equations using indefinite symmetric low-rank factorizations. This allows the application of the method to the case of general large-scale sparse coefficient matrices. We provide convergence results for several prominent realizations of the equation and show in numerical examples the effectiveness of the approach.

We address the problem of constructing approximations based on orthogonal polynomials that preserve an arbitrary set of moments of a given function without loosing the spectral convergence property. To this aim, we compute the constrained polynomial of best approximation for a generic basis of orthogonal polynomials. The construction is entirely general and allows us to derive structure preserving numerical methods for partial differential equations that require the conservation of some moments of the solution, typically representing relevant physical quantities of the problem. These properties are essential to capture with high accuracy the long-time behavior of the solution. We illustrate with the aid of several numerical applications to Fokker-Planck equations the generality and the performances of the present approach.

We demonstrate a multiplication method based on numbers represented as set of polynomial radix 2 indices stored as an integer list. The 'polynomial integer index multiplication' method is a set of algorithms implemented in python code. We demonstrate the method to be faster than both the Number Theoretic Transform (NTT) and Karatsuba for multiplication within a certain bit range. Also implemented in python code for comparison purposes with the polynomial radix 2 integer method. We demonstrate that it is possible to express any integer or real number as a list of integer indices, representing a finite series in base two. The finite series of integer index representation of a number can then be stored and distributed across multiple CPUs / GPUs. We show that operations of addition and multiplication can be applied as two's complement additions operating on the index integer representations and can be fully distributed across a given CPU / GPU architecture. We demonstrate fully distributed arithmetic operations such that the 'polynomial integer index multiplication' method overcomes the current limitation of parallel multiplication methods. Ie, the need to share common core memory and common disk for the calculation of results and intermediate results.

In the realm of statistical exploration, the manipulation of pseudo-random values to discern their impact on data distribution presents a compelling avenue of inquiry. This article investigates the question: Is it possible to add pseudo-random values without compelling a shift towards a normal distribution?. Employing Python techniques, the study explores the nuances of pseudo-random value addition within the context of additions, aiming to unravel the interplay between randomness and resulting statistical characteristics. The Materials and Methods chapter details the construction of datasets comprising up to 300 billion pseudo-random values, employing three distinct layers of manipulation. The Results chapter visually and quantitatively explores the generated datasets, emphasizing distribution and standard deviation metrics. The study concludes with reflections on the implications of pseudo-random value manipulation and suggests avenues for future research. In the layered exploration, the first layer introduces subtle normalization with increasing summations, while the second layer enhances normality. The third layer disrupts typical distribution patterns, leaning towards randomness despite pseudo-random value summation. Standard deviation patterns across layers further illuminate the dynamic interplay of pseudo-random operations on statistical characteristics. While not aiming to disrupt academic norms, this work modestly contributes insights into data distribution complexities. Future studies are encouraged to delve deeper into the implications of data manipulation on statistical outcomes, extending the understanding of pseudo-random operations in diverse contexts.

The comparison of frequency distributions is a common statistical task with broad applications and a long history of methodological development. However, existing measures do not quantify the magnitude and direction by which one distribution is shifted relative to another. In the present study, we define distributional shift (DS) as the concentration of frequencies away from the greatest discrete class, e.g., a histogram's right-most bin. We derive a measure of DS based on the sum of cumulative frequencies, intuitively quantifying shift as a statistical moment. We then define relative distributional shift (RDS) as the difference in DS between distributions. Using simulated random sampling, we demonstrate that RDS is highly related to measures that are popularly used to compare frequency distributions. Focusing on a specific use case, i.e., simulated healthcare Evaluation and Management coding profiles, we show how RDS can be used to examine many pairs of empirical and expected distributions via shift-significance plots. In comparison to other measures, RDS has the unique advantage of being a signed (directional) measure based on a simple difference in an intuitive property.

This paper gives a comprehensive treatment of the convergence rates of penalized spline estimators for simultaneously estimating several leading principal component functions, when the functional data is sparsely observed. The penalized spline estimators are defined as the solution of a penalized empirical risk minimization problem, where the loss function belongs to a general class of loss functions motivated by the matrix Bregman divergence, and the penalty term is the integrated squared derivative. The theory reveals that the asymptotic behavior of penalized spline estimators depends on the interesting interplay between several factors, i.e., the smoothness of the unknown functions, the spline degree, the spline knot number, the penalty order, and the penalty parameter. The theory also classifies the asymptotic behavior into seven scenarios and characterizes whether and how the minimax optimal rates of convergence are achievable in each scenario.

北京阿比特科技有限公司