亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Solving Nash equilibrium is the key challenge in normal-form games with large strategy spaces, where open-ended learning frameworks offer an efficient approach. In this work, we propose an innovative unified open-ended learning framework A-PSRO, i.e., Advantage Policy Space Response Oracle, as a comprehensive framework for both zero-sum and general-sum games. In particular, we introduce the advantage function as an enhanced evaluation metric for strategies, enabling a unified learning objective for agents engaged in normal-form games. We prove that the advantage function exhibits favorable properties and is connected with the Nash equilibrium, which can be used as an objective to guide agents to learn strategies efficiently. Our experiments reveal that A-PSRO achieves a considerable decrease in exploitability in zero-sum games and an escalation in rewards in general-sum games, significantly outperforming previous PSRO algorithms.

相關內容

Large pre-trained models have had a significant impact on computer vision by enabling multi-modal learning, where the CLIP model has achieved impressive results in image classification, object detection, and semantic segmentation. However, the model's performance on 3D point cloud processing tasks is limited due to the domain gap between depth maps from 3D projection and training images of CLIP. This paper proposes DiffCLIP, a new pre-training framework that incorporates stable diffusion with ControlNet to minimize the domain gap in the visual branch. Additionally, a style-prompt generation module is introduced for few-shot tasks in the textual branch. Extensive experiments on the ModelNet10, ModelNet40, and ScanObjectNN datasets show that DiffCLIP has strong abilities for 3D understanding. By using stable diffusion and style-prompt generation, DiffCLIP achieves an accuracy of 43.2\% for zero-shot classification on OBJ\_BG of ScanObjectNN, which is state-of-the-art performance, and an accuracy of 80.6\% for zero-shot classification on ModelNet10, which is comparable to state-of-the-art performance.

Graph Transformers (GTs) have significantly advanced the field of graph representation learning by overcoming the limitations of message-passing graph neural networks (GNNs) and demonstrating promising performance and expressive power. However, the quadratic complexity of self-attention mechanism in GTs has limited their scalability, and previous approaches to address this issue often suffer from expressiveness degradation or lack of versatility. To address this issue, we propose AnchorGT, a novel attention architecture for GTs with global receptive field and almost linear complexity, which serves as a flexible building block to improve the scalability of a wide range of GT models. Inspired by anchor-based GNNs, we employ structurally important $k$-dominating node set as anchors and design an attention mechanism that focuses on the relationship between individual nodes and anchors, while retaining the global receptive field for all nodes. With its intuitive design, AnchorGT can easily replace the attention module in various GT models with different network architectures and structural encodings, resulting in reduced computational overhead without sacrificing performance. In addition, we theoretically prove that AnchorGT attention can be strictly more expressive than Weisfeiler-Lehman test, showing its superiority in representing graph structures. Our experiments on three state-of-the-art GT models demonstrate that their AnchorGT variants can achieve better results while being faster and significantly more memory efficient.

In advancing parallel programming, particularly with OpenMP, the shift towards NLP-based methods marks a significant innovation beyond traditional S2S tools like Autopar and Cetus. These NLP approaches train on extensive datasets of examples to efficiently generate optimized parallel code, streamlining the development process. This method's strength lies in its ability to swiftly produce parallelized code that runs efficiently. However, this reliance on NLP models, without direct code analysis, can introduce inaccuracies, as these models might not fully grasp the nuanced semantics of the code they parallelize. We build OMP-Engineer, which balances the efficiency and scalability of NLP models with the accuracy and reliability of traditional methods, aiming to enhance the performance of automating parallelization while navigating its inherent challenges.

Robotics presents a promising opportunity for enhancing bathing assistance, potentially to alleviate labor shortages and reduce care costs, while offering consistent and gentle care for individuals with physical disabilities. However, ensuring flexible and efficient cleaning of the human body poses challenges as it involves direct physical contact between the human and the robot, and necessitates simple, safe, and effective control. In this paper, we introduce a soft, expandable robotic manipulator with embedded capacitive proximity sensing arrays, designed for safe and efficient bathing assistance. We conduct a thorough evaluation of our soft manipulator, comparing it with a baseline rigid end effector in a human study involving 12 participants across $96$ bathing trails. Our soft manipulator achieves an an average cleaning effectiveness of 88.8% on arms and 81.4% on legs, far exceeding the performance of the baseline. Participant feedback further validates the manipulator's ability to maintain safety, comfort, and thorough cleaning.

Data slice finding is an emerging technique for validating machine learning (ML) models by identifying and analyzing subgroups in a dataset that exhibit poor performance, often characterized by distinct feature sets or descriptive metadata. However, in the context of validating vision models involving unstructured image data, this approach faces significant challenges, including the laborious and costly requirement for additional metadata and the complex task of interpreting the root causes of underperformance. To address these challenges, we introduce AttributionScanner, an innovative human-in-the-loop Visual Analytics (VA) system, designed for metadata-free data slice finding. Our system identifies interpretable data slices that involve common model behaviors and visualizes these patterns through an Attribution Mosaic design. Our interactive interface provides straightforward guidance for users to detect, interpret, and annotate predominant model issues, such as spurious correlations (model biases) and mislabeled data, with minimal effort. Additionally, it employs a cutting-edge model regularization technique to mitigate the detected issues and enhance the model's performance. The efficacy of AttributionScanner is demonstrated through use cases involving two benchmark datasets, with qualitative and quantitative evaluations showcasing its substantial effectiveness in vision model validation, ultimately leading to more reliable and accurate models.

Large Vision-Language models (VLMs) have demonstrated strong reasoning capabilities in tasks requiring a fine-grained understanding of literal images and text, such as visual question-answering or visual entailment. However, there has been little exploration of these models' capabilities when presented with images and captions containing figurative phenomena such as metaphors or humor, the meaning of which is often implicit. To close this gap, we propose a new task and a high-quality dataset: Visual Figurative Language Understanding with Textual Explanations (V-FLUTE). We frame the visual figurative language understanding problem as an explainable visual entailment task, where the model has to predict whether the image (premise) entails a claim (hypothesis) and justify the predicted label with a textual explanation. Using a human-AI collaboration framework, we build a high-quality dataset, V-FLUTE, that contains 6,027 <image, claim, label, explanation> instances spanning five diverse multimodal figurative phenomena: metaphors, similes, idioms, sarcasm, and humor. The figurative phenomena can be present either in the image, the caption, or both. We further conduct both automatic and human evaluations to assess current VLMs' capabilities in understanding figurative phenomena.

This paper studies a class of network games with linear-quadratic payoffs and externalities exerted through a strictly concave interaction function. This class of game is motivated by the diminishing marginal effects with peer influences. We analyze the optimal pricing strategy for this class of network game. First, we prove the existence of a unique Nash Equilibrium (NE). Second, we study the optimal pricing strategy of a monopolist selling a divisible good to agents. We show that the optimal pricing strategy, found by solving a bilevel optimization problem, is strictly better when the monopolist knows the network structure as opposed to the best strategy agnostic to network structure. Numerical experiments demonstrate that in most cases, the maximum revenue is achieved with an asymmetric network. These results contrast with the previously studied case of linear interaction function, where a network-independent price is proven optimal with symmetric networks. Lastly, we describe an efficient algorithm to find the optimal pricing strategy.

In the post-deep learning era, the Transformer architecture has demonstrated its powerful performance across pre-trained big models and various downstream tasks. However, the enormous computational demands of this architecture have deterred many researchers. To further reduce the complexity of attention models, numerous efforts have been made to design more efficient methods. Among them, the State Space Model (SSM), as a possible replacement for the self-attention based Transformer model, has drawn more and more attention in recent years. In this paper, we give the first comprehensive review of these works and also provide experimental comparisons and analysis to better demonstrate the features and advantages of SSM. Specifically, we first give a detailed description of principles to help the readers quickly capture the key ideas of SSM. After that, we dive into the reviews of existing SSMs and their various applications, including natural language processing, computer vision, graph, multi-modal and multi-media, point cloud/event stream, time series data, and other domains. In addition, we give statistical comparisons and analysis of these models and hope it helps the readers to understand the effectiveness of different structures on various tasks. Then, we propose possible research points in this direction to better promote the development of the theoretical model and application of SSM. More related works will be continuously updated on the following GitHub: //github.com/Event-AHU/Mamba_State_Space_Model_Paper_List.

Promoting behavioural diversity is critical for solving games with non-transitive dynamics where strategic cycles exist, and there is no consistent winner (e.g., Rock-Paper-Scissors). Yet, there is a lack of rigorous treatment for defining diversity and constructing diversity-aware learning dynamics. In this work, we offer a geometric interpretation of behavioural diversity in games and introduce a novel diversity metric based on \emph{determinantal point processes} (DPP). By incorporating the diversity metric into best-response dynamics, we develop \emph{diverse fictitious play} and \emph{diverse policy-space response oracle} for solving normal-form games and open-ended games. We prove the uniqueness of the diverse best response and the convergence of our algorithms on two-player games. Importantly, we show that maximising the DPP-based diversity metric guarantees to enlarge the \emph{gamescape} -- convex polytopes spanned by agents' mixtures of strategies. To validate our diversity-aware solvers, we test on tens of games that show strong non-transitivity. Results suggest that our methods achieve much lower exploitability than state-of-the-art solvers by finding effective and diverse strategies.

Multi-agent influence diagrams (MAIDs) are a popular form of graphical model that, for certain classes of games, have been shown to offer key complexity and explainability advantages over traditional extensive form game (EFG) representations. In this paper, we extend previous work on MAIDs by introducing the concept of a MAID subgame, as well as subgame perfect and trembling hand perfect equilibrium refinements. We then prove several equivalence results between MAIDs and EFGs. Finally, we describe an open source implementation for reasoning about MAIDs and computing their equilibria.

北京阿比特科技有限公司