In epidemiology, understanding causal mechanisms across different populations is essential for designing effective public health interventions. Recently, difference graphs have been introduced as a tool to visually represent causal variations between two distinct populations. While there has been progress in inferring these graphs from data through causal discovery methods, there remains a gap in systematically leveraging their potential to enhance causal reasoning. This paper addresses that gap by establishing conditions for identifying causal changes and effects using difference graphs and observational data. It specifically focuses on identifying total causal changes and total effects in a nonparametric framework, as well as direct causal changes and direct effects in a linear context. In doing so, it provides a novel approach to causal reasoning that holds potential for various public health applications.
This paper presents an innovative method for predicting shape errors in 5-axis machining using graph neural networks. The graph structure is defined with nodes representing workpiece surface points and edges denoting the neighboring relationships. The dataset encompasses data from a material removal simulation, process data, and post-machining quality information. Experimental results show that the presented approach can generalize the shape error prediction for the investigated workpiece geometry. Moreover, by modelling spatial and temporal connections within the workpiece, the approach handles a low number of labels compared to non-graphical methods such as Support Vector Machines.
In reinsurance, Poisson and Negative binomial distributions are employed for modeling frequency. However, the incomplete data regarding reported incurred claims above a priority level presents challenges in estimation. This paper focuses on frequency estimation using Schnieper's framework for claim numbering. We demonstrate that Schnieper's model is consistent with a Poisson distribution for the total number of claims above a priority at each year of development, providing a robust basis for parameter estimation. Additionally, we explain how to build an alternative assumption based on a Negative binomial distribution, which yields similar results. The study includes a bootstrap procedure to manage uncertainty in parameter estimation and a case study comparing assumptions and evaluating the impact of the bootstrap approach.
The present paper evaluates the learning behaviour of a transformer-based neural network with regard to an irregular inflectional paradigm. We apply the paradigm cell filling problem to irregular patterns. We approach this problem using the morphological reinflection task and model it as a character sequence-to-sequence learning problem. The test case under investigation are irregular verbs in Spanish. Besides many regular verbs in Spanish L-shaped verbs the first person singular indicative stem irregularly matches the subjunctive paradigm, while other indicative forms remain unaltered. We examine the role of frequency during learning and compare models under differing input frequency conditions. We train the model on a corpus of Spanish with a realistic distribution of regular and irregular verbs to compare it with models trained on input with augmented distributions of (ir)regular words. We explore how the neural models learn this L-shaped pattern using post-hoc analyses. Our experiments show that, across frequency conditions, the models are surprisingly capable of learning the irregular pattern. Furthermore, our post-hoc analyses reveal the possible sources of errors. All code and data are available at \url{//anonymous.4open.science/r/modeling_spanish_acl-7567/} under MIT license.
High-dimensional, higher-order tensor data are gaining prominence in a variety of fields, including but not limited to computer vision and network analysis. Tensor factor models, induced from noisy versions of tensor decompositions or factorizations, are natural potent instruments to study a collection of tensor-variate objects that may be dependent or independent. However, it is still in the early stage of developing statistical inferential theories for the estimation of various low-rank structures, which are customary to play the role of signals of tensor factor models. In this paper, we attempt to ``decode" the estimation of a higher-order tensor factor model by leveraging tensor matricization. Specifically, we recast it into mode-wise traditional high-dimensional vector/fiber factor models, enabling the deployment of conventional principal components analysis (PCA) for estimation. Demonstrated by the Tucker tensor factor model (TuTFaM), which is induced from the noisy version of the widely-used Tucker decomposition, we summarize that estimations on signal components are essentially mode-wise PCA techniques, and the involvement of projection and iteration will enhance the signal-to-noise ratio to various extent. We establish the inferential theory of the proposed estimators, conduct rich simulation experiments, and illustrate how the proposed estimations can work in tensor reconstruction, and clustering for independent video and dependent economic datasets, respectively.
We study the problem of testing whether the missing values of a potentially high-dimensional dataset are Missing Completely at Random (MCAR). We relax the problem of testing MCAR to the problem of testing the compatibility of a collection of covariance matrices, motivated by the fact that this procedure is feasible when the dimension grows with the sample size. Our first contributions are to define a natural measure of the incompatibility of a collection of correlation matrices, which can be characterised as the optimal value of a Semi-definite Programming (SDP) problem, and to establish a key duality result allowing its practical computation and interpretation. By analysing the concentration properties of the natural plug-in estimator for this measure, we propose a novel hypothesis test, which is calibrated via a bootstrap procedure and demonstrates power against any distribution with incompatible covariance matrices. By considering key examples of missingness structures, we demonstrate that our procedures are minimax rate optimal in certain cases. We further validate our methodology with numerical simulations that provide evidence of validity and power, even when data are heavy tailed. Furthermore, tests of compatibility can be used to test the feasibility of positive semi-definite matrix completion problems with noisy observations, and thus our results may be of independent interest.
Density dependence occurs at the individual level but is often evaluated at the population level, leading to difficulties or even controversies in detecting such a process. Bayesian individual-based models such as spatial capture-recapture (SCR) models provide opportunities to study density dependence at the individual level, but such an approach remains to be developed and evaluated. In this study, we developed a SCR model that links habitat use to apparent survival and recruitment through density dependent processes at the individual level. Using simulations, we found that the model can properly inform habitat use, but tends to underestimate the effect of density dependence on apparent survival and recruitment. The reason for such underestimations is likely due to the fact that SCR models have difficulties in identifying the locations of unobserved individuals while assuming they are uniformly distributed. How to accurately estimate the locations of unobserved individuals, and thus density dependence, remains a challenging topic in spatial statistics and statistical ecology.
Computed tomography (CT) is a widely used non-invasive diagnostic method in various fields, and recent advances in deep learning have led to significant progress in CT image reconstruction. However, the lack of large-scale, open-access datasets has hindered the comparison of different types of learned methods. To address this gap, we use the 2DeteCT dataset, a real-world experimental computed tomography dataset, for benchmarking machine learning based CT image reconstruction algorithms. We categorize these methods into post-processing networks, learned/unrolled iterative methods, learned regularizer methods, and plug-and-play methods, and provide a pipeline for easy implementation and evaluation. Using key performance metrics, including SSIM and PSNR, our benchmarking results showcase the effectiveness of various algorithms on tasks such as full data reconstruction, limited-angle reconstruction, sparse-angle reconstruction, low-dose reconstruction, and beam-hardening corrected reconstruction. With this benchmarking study, we provide an evaluation of a range of algorithms representative for different categories of learned reconstruction methods on a recently published dataset of real-world experimental CT measurements. The reproducible setup of methods and CT image reconstruction tasks in an open-source toolbox enables straightforward addition and comparison of new methods later on. The toolbox also provides the option to load the 2DeteCT dataset differently for extensions to other problems and different CT reconstruction tasks.
Ideally, all analyses of normally distributed data should include the full covariance information between all data points. In practice, the full covariance matrix between all data points is not always available. Either because a result was published without a covariance matrix, or because one tries to combine multiple results from separate publications. For simple hypothesis tests, it is possible to define robust test statistics that will behave conservatively in the presence on unknown correlations. For model parameter fits, one can inflate the variance by a factor to ensure that things remain conservative at least up to a chosen confidence level. This paper describes a class of robust test statistics for simple hypothesis tests, as well as an algorithm to determine the necessary inflation factor for model parameter fits and Goodness of Fit tests and composite hypothesis tests. It then presents some example applications of the methods to real neutrino interaction data and model comparisons.
This manuscript describes the notions of blocker and interdiction applied to well-known optimization problems. The main interest of these two concepts is the capability to analyze the existence of a combinatorial structure after some modifications. We focus on graph modification, like removing vertices or links in a network. In the interdiction version, we have a budget for modification to reduce as much as possible the size of a given combinatorial structure. Whereas, for the blocker version, we minimize the number of modifications such that the network does not contain a given combinatorial structure. Blocker and interdiction problems have some similarities and can be applied to well-known optimization problems. We consider matching, connectivity, shortest path, max flow, and clique problems. For these problems, we analyze either the blocker version or the interdiction one. Applying the concept of blocker or interdiction to well-known optimization problems can change their complexities. Some optimization problems become harder when one of these two notions is applied. For this reason, we propose some complexity analysis to show when an optimization problem, or the associated decision problem, becomes harder. Another fundamental aspect developed in the manuscript is the use of exact methods to tackle these optimization problems. The main way to solve these problems is to use integer linear programming to model them. An interesting aspect of integer linear programming is the possibility to analyze theoretically the strength of these models, using cutting planes. For most of the problems studied in this manuscript, a polyhedral analysis is performed to prove the strength of inequalities or describe new families of inequalities. The exact algorithms proposed are based on Branch-and-Cut or Branch-and-Price algorithm, where dedicated separation and pricing algorithms are proposed.
Extreme events over large spatial domains may exhibit highly heterogeneous tail dependence characteristics, yet most existing spatial extremes models yield only one dependence class over the entire spatial domain. To accurately characterize "data-level dependence'' in analysis of extreme events, we propose a mixture model that achieves flexible dependence properties and allows high-dimensional inference for extremes of spatial processes. We modify the popular random scale construction that multiplies a Gaussian random field by a single radial variable; we allow the radial variable to vary smoothly across space and add non-stationarity to the Gaussian process. As the level of extremeness increases, this single model exhibits both asymptotic independence at long ranges and either asymptotic dependence or independence at short ranges. We make joint inference on the dependence model and a marginal model using a copula approach within a Bayesian hierarchical model. Three different simulation scenarios show close to nominal frequentist coverage rates. Lastly, we apply the model to a dataset of extreme summertime precipitation over the central United States. We find that the joint tail of precipitation exhibits non-stationary dependence structure that cannot be captured by limiting extreme value models or current state-of-the-art sub-asymptotic models.