Motion in-betweening, a fundamental task in character animation, consists of generating motion sequences that plausibly interpolate user-provided keyframe constraints. It has long been recognized as a labor-intensive and challenging process. We investigate the potential of diffusion models in generating diverse human motions guided by keyframes. Unlike previous inbetweening methods, we propose a simple unified model capable of generating precise and diverse motions that conform to a flexible range of user-specified spatial constraints, as well as text conditioning. To this end, we propose Conditional Motion Diffusion In-betweening (CondMDI) which allows for arbitrary dense-or-sparse keyframe placement and partial keyframe constraints while generating high-quality motions that are diverse and coherent with the given keyframes. We evaluate the performance of CondMDI on the text-conditioned HumanML3D dataset and demonstrate the versatility and efficacy of diffusion models for keyframe in-betweening. We further explore the use of guidance and imputation-based approaches for inference-time keyframing and compare CondMDI against these methods.
We consider the problem of parameter estimation in a high-dimensional generalized linear model. Spectral methods obtained via the principal eigenvector of a suitable data-dependent matrix provide a simple yet surprisingly effective solution. However, despite their wide use, a rigorous performance characterization, as well as a principled way to preprocess the data, are available only for unstructured (i.i.d.\ Gaussian and Haar orthogonal) designs. In contrast, real-world data matrices are highly structured and exhibit non-trivial correlations. To address the problem, we consider correlated Gaussian designs capturing the anisotropic nature of the features via a covariance matrix $\Sigma$. Our main result is a precise asymptotic characterization of the performance of spectral estimators. This allows us to identify the optimal preprocessing that minimizes the number of samples needed for parameter estimation. Surprisingly, such preprocessing is universal across a broad set of designs, which partly addresses a conjecture on optimal spectral estimators for rotationally invariant models. Our principled approach vastly improves upon previous heuristic methods, including for designs common in computational imaging and genetics. The proposed methodology, based on approximate message passing, is broadly applicable and opens the way to the precise characterization of spiked matrices and of the corresponding spectral methods in a variety of settings.
Generative modeling seeks to approximate the statistical properties of real data, enabling synthesis of new data that closely resembles the original distribution. Generative Adversarial Networks (GANs) and Denoising Diffusion Probabilistic Models (DDPMs) represent significant advancements in generative modeling, drawing inspiration from game theory and thermodynamics, respectively. Nevertheless, the exploration of generative modeling through the lens of biological evolution remains largely untapped. In this paper, we introduce a novel family of models termed Generative Cellular Automata (GeCA), inspired by the evolution of an organism from a single cell. GeCAs are evaluated as an effective augmentation tool for retinal disease classification across two imaging modalities: Fundus and Optical Coherence Tomography (OCT). In the context of OCT imaging, where data is scarce and the distribution of classes is inherently skewed, GeCA significantly boosts the performance of 11 different ophthalmological conditions, achieving a 12% increase in the average F1 score compared to conventional baselines. GeCAs outperform both diffusion methods that incorporate UNet or state-of-the art variants with transformer-based denoising models, under similar parameter constraints. Code is available at: //github.com/xmed-lab/GeCA.
The roadmap is organized into several thematic sections, outlining current computing challenges, discussing the neuromorphic computing approach, analyzing mature and currently utilized technologies, providing an overview of emerging technologies, addressing material challenges, exploring novel computing concepts, and finally examining the maturity level of emerging technologies while determining the next essential steps for their advancement.
To efficiently find an optimum parameter combination in a large-scale problem, it is a key to convert the parameters into available variables in actual machines. Specifically, quadratic unconstrained binary optimization problems are solved with the help of machine learning, e.g., factorization machines with annealing, which convert a raw parameter to binary variables. This work investigates the dependence of the convergence speed and the accuracy on binary labeling method, which can influence the cost function shape and thus the probability of being captured at a local minimum solution. By exemplifying traveling salesman problem, we propose and evaluate Gray labeling, which correlates the Hamming distance in binary labels with the traveling distance. Through numerical simulation of traveling salesman problem up to 15 cities at a limited number of iterations, the Gray labeling shows less local minima percentages and shorter traveling distances compared with natural labeling.
Linear mixed models (LMMs), which typically assume normality for both the random effects and error terms, are a popular class of methods for analyzing longitudinal and clustered data. However, such models can be sensitive to outliers, and this can lead to poor statistical results (e.g., biased inference on model parameters and inaccurate prediction of random effects) if the data are contaminated. We propose a new approach to robust estimation and inference for LMMs using a hierarchical gamma divergence, which offers an automated, data-driven approach to downweight the effects of outliers occurring in both the error, and the random effects, using normalized powered density weights. For estimation and inference, we develop a computationally scalable minorization-maximization algorithm for the resulting objective function, along with a clustered bootstrap method for uncertainty quantification and a Hyvarinen score criterion for selecting a tuning parameter controlling the degree of robustness. When the genuine and contamination mixed effects distributions are sufficiently separated, then under suitable regularity conditions assuming the number of clusters tends to infinity, we show the resulting robust estimates can be asymptotically controlled even under a heavy level of (covariate-dependent) contamination. Simulation studies demonstrate hierarchical gamma divergence consistently outperforms several currently available methods for robustifying LMMs, under a wide range of scenarios of outlier generation at both the response and random effects levels. We illustrate the proposed method using data from a multi-center AIDS cohort study, where the use of a robust LMMs using hierarchical gamma divergence approach produces noticeably different results compared to methods that do not adequately adjust for potential outlier contamination.
We consider the task of generating segmentation masks for the target object from an object manipulation instruction, which allows users to give open vocabulary instructions to domestic service robots. Conventional segmentation generation approaches often fail to account for objects outside the camera's field of view and cases in which the order of vertices differs but still represents the same polygon, which leads to erroneous mask generation. In this study, we propose a novel method that generates segmentation masks from open vocabulary instructions. We implement a novel loss function using optimal transport to prevent significant loss where the order of vertices differs but still represents the same polygon. To evaluate our approach, we constructed a new dataset based on the REVERIE dataset and Matterport3D dataset. The results demonstrated the effectiveness of the proposed method compared with existing mask generation methods. Remarkably, our best model achieved a +16.32% improvement on the dataset compared with a representative polygon-based method.
We propose a deep neural network architecture designed such that its output forms an invertible symplectomorphism of the input. This design draws an analogy to the real-valued non-volume-preserving (real NVP) method used in normalizing flow techniques. Utilizing this neural network type allows for learning tasks on unknown Hamiltonian systems without breaking the inherent symplectic structure of the phase space.
Graphs are used widely to model complex systems, and detecting anomalies in a graph is an important task in the analysis of complex systems. Graph anomalies are patterns in a graph that do not conform to normal patterns expected of the attributes and/or structures of the graph. In recent years, graph neural networks (GNNs) have been studied extensively and have successfully performed difficult machine learning tasks in node classification, link prediction, and graph classification thanks to the highly expressive capability via message passing in effectively learning graph representations. To solve the graph anomaly detection problem, GNN-based methods leverage information about the graph attributes (or features) and/or structures to learn to score anomalies appropriately. In this survey, we review the recent advances made in detecting graph anomalies using GNN models. Specifically, we summarize GNN-based methods according to the graph type (i.e., static and dynamic), the anomaly type (i.e., node, edge, subgraph, and whole graph), and the network architecture (e.g., graph autoencoder, graph convolutional network). To the best of our knowledge, this survey is the first comprehensive review of graph anomaly detection methods based on GNNs.
As a scene graph compactly summarizes the high-level content of an image in a structured and symbolic manner, the similarity between scene graphs of two images reflects the relevance of their contents. Based on this idea, we propose a novel approach for image-to-image retrieval using scene graph similarity measured by graph neural networks. In our approach, graph neural networks are trained to predict the proxy image relevance measure, computed from human-annotated captions using a pre-trained sentence similarity model. We collect and publish the dataset for image relevance measured by human annotators to evaluate retrieval algorithms. The collected dataset shows that our method agrees well with the human perception of image similarity than other competitive baselines.
Object detection typically assumes that training and test data are drawn from an identical distribution, which, however, does not always hold in practice. Such a distribution mismatch will lead to a significant performance drop. In this work, we aim to improve the cross-domain robustness of object detection. We tackle the domain shift on two levels: 1) the image-level shift, such as image style, illumination, etc, and 2) the instance-level shift, such as object appearance, size, etc. We build our approach based on the recent state-of-the-art Faster R-CNN model, and design two domain adaptation components, on image level and instance level, to reduce the domain discrepancy. The two domain adaptation components are based on H-divergence theory, and are implemented by learning a domain classifier in adversarial training manner. The domain classifiers on different levels are further reinforced with a consistency regularization to learn a domain-invariant region proposal network (RPN) in the Faster R-CNN model. We evaluate our newly proposed approach using multiple datasets including Cityscapes, KITTI, SIM10K, etc. The results demonstrate the effectiveness of our proposed approach for robust object detection in various domain shift scenarios.