亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We propose a method for reporting how program evaluations reduce gaps between groups, such as the gender or Black-white gap. We first show that the reduction in disparities between groups can be written as the difference in conditional average treatment effects (CATE) for each group. Then, using a Kitagawa-Oaxaca-Blinder-style decomposition, we highlight how these CATE can be decomposed into unexplained differences in CATE in other observables versus differences in composition across other observables (e.g. the "endowment"). Finally, we apply this approach to study the impact of Medicare on American's access to health insurance.

相關內容

The blockchain-based smart contract lacks privacy since the contract state and instruction code are exposed to the public. Combining smart-contract execution with Trusted Execution Environments (TEEs) provides an efficient solution, called TEE-assisted smart contracts, for protecting the confidentiality of contract states. However, the combination approaches are varied, and a systematic study is absent. Newly released systems may fail to draw upon the experience learned from existing protocols, such as repeating known design mistakes or applying TEE technology in insecure ways. In this paper, we first investigate and categorize the existing systems into two types: the layer-one solution and layer-two solution. Then, we establish an analysis framework to capture their common lights, covering the desired properties (for contract services), threat models, and security considerations (for underlying systems). Based on our taxonomy, we identify their ideal functionalities and uncover the fundamental flaws and reasons for the challenges in each specification design. We believe that this work would provide a guide for the development of TEE-assisted smart contracts, as well as a framework to evaluate future TEE-assisted confidential contract systems.

The number of information systems (IS) studies dealing with explainable artificial intelligence (XAI) is currently exploding as the field demands more transparency about the internal decision logic of machine learning (ML) models. However, most techniques subsumed under XAI provide post-hoc-analytical explanations, which have to be considered with caution as they only use approximations of the underlying ML model. Therefore, our paper investigates a series of intrinsically interpretable ML models and discusses their suitability for the IS community. More specifically, our focus is on advanced extensions of generalized additive models (GAM) in which predictors are modeled independently in a non-linear way to generate shape functions that can capture arbitrary patterns but remain fully interpretable. In our study, we evaluate the prediction qualities of five GAMs as compared to six traditional ML models and assess their visual outputs for model interpretability. On this basis, we investigate their merits and limitations and derive design implications for further improvements.

In a sports competition, a team might lose a powerful incentive to exert full effort if its final rank does not depend on the outcome of the matches still to be played. Therefore, the organiser should reduce the probability of such a situation to the extent possible. Our paper provides a classification scheme to identify these weakly (where one team is indifferent) or strongly (where both teams are indifferent) stakeless games. A statistical model is estimated to simulate the UEFA Champions League groups and compare the candidate schedules used in the 2021/22 season according to the competitiveness of the matches played in the last round(s). The option followed in four of the eight groups is found to be optimal under a wide set of parameters. Minimising the number of strongly stakeless matches is verified to be a likely goal in the computer draw of the fixture that remains hidden from the public.

Generating a test suite for a quantum program such that it has the maximum number of failing tests is an optimization problem. For such optimization, search-based testing has shown promising results in the context of classical programs. To this end, we present a test generation tool for quantum programs based on a genetic algorithm, called QuSBT (Search-based Testing of Quantum Programs). QuSBT automates the testing of quantum programs, with the aim of finding a test suite having the maximum number of failing test cases. QuSBT utilizes IBM's Qiskit as the simulation framework for quantum programs. We present the tool architecture in addition to the implemented methodology (i.e., the encoding of the search individual, the definition of the fitness function expressing the search problem, and the test assessment w.r.t. two types of failures). Finally, we report results of the experiments in which we tested a set of faulty quantum programs with QuSBT to assess its effectiveness. Repository (code and experimental results): //github.com/Simula-COMPLEX/qusbt-tool Video: //youtu.be/3apRCtluAn4

This study aims to information security in academic information systems to provide recommendations for improvements in information security management by the expected maturity level based on ISO/IEC 27002:2013. By using a qualitative descriptive approach, data collection and validation techniques with triangulation techniques are interviews, observation, and documentation. The data were analyzed by using gap analysis and to measure the maturity level determined 15 objective control and 45 security controls scattered in 5 clauses, the result of the research found that the performance of academic information system maturity level at level 2. That is, the current level of maturity is below the expected maturity level, so it needs to be increased to the expected level.

The performance of a quantum information processing protocol is ultimately judged by distinguishability measures that quantify how distinguishable the actual result of the protocol is from the ideal case. The most prominent distinguishability measures are those based on the fidelity and trace distance, due to their physical interpretations. In this paper, we propose and review several algorithms for estimating distinguishability measures based on trace distance and fidelity. The algorithms can be used for distinguishing quantum states, channels, and strategies (the last also known in the literature as "quantum combs"). The fidelity-based algorithms offer novel physical interpretations of these distinguishability measures in terms of the maximum probability with which a single prover (or competing provers) can convince a verifier to accept the outcome of an associated computation. We simulate many of these algorithms by using a variational approach with parameterized quantum circuits. We find that the simulations converge well in both the noiseless and noisy scenarios, for all examples considered. Furthermore, the noisy simulations exhibit a parameter noise resilience.

Learning accurate classifiers for novel categories from very few examples, known as few-shot image classification, is a challenging task in statistical machine learning and computer vision. The performance in few-shot classification suffers from the bias in the estimation of classifier parameters; however, an effective underlying bias reduction technique that could alleviate this issue in training few-shot classifiers has been overlooked. In this work, we demonstrate the effectiveness of Firth bias reduction in few-shot classification. Theoretically, Firth bias reduction removes the $O(N^{-1})$ first order term from the small-sample bias of the Maximum Likelihood Estimator. Here we show that the general Firth bias reduction technique simplifies to encouraging uniform class assignment probabilities for multinomial logistic classification, and almost has the same effect in cosine classifiers. We derive an easy-to-implement optimization objective for Firth penalized multinomial logistic and cosine classifiers, which is equivalent to penalizing the cross-entropy loss with a KL-divergence between the uniform label distribution and the predictions. Then, we empirically evaluate that it is consistently effective across the board for few-shot image classification, regardless of (1) the feature representations from different backbones, (2) the number of samples per class, and (3) the number of classes. Finally, we show the robustness of Firth bias reduction, in the case of imbalanced data distribution. Our implementation is available at //github.com/ehsansaleh/firth_bias_reduction

We recall some of the history of the information-theoretic approach to deriving core results in probability theory and indicate parts of the recent resurgence of interest in this area with current progress along several interesting directions. Then we give a new information-theoretic proof of a finite version of de Finetti's classical representation theorem for finite-valued random variables. We derive an upper bound on the relative entropy between the distribution of the first $k$ in a sequence of $n$ exchangeable random variables, and an appropriate mixture over product distributions. The mixing measure is characterised as the law of the empirical measure of the original sequence, and de Finetti's result is recovered as a corollary. The proof is nicely motivated by the Gibbs conditioning principle in connection with statistical mechanics, and it follows along an appealing sequence of steps. The technical estimates required for these steps are obtained via the use of a collection of combinatorial tools known within information theory as `the method of types.'

In 1954, Alston S. Householder published Principles of Numerical Analysis, one of the first modern treatments on matrix decomposition that favored a (block) LU decomposition-the factorization of a matrix into the product of lower and upper triangular matrices. And now, matrix decomposition has become a core technology in machine learning, largely due to the development of the back propagation algorithm in fitting a neural network. The sole aim of this survey is to give a self-contained introduction to concepts and mathematical tools in numerical linear algebra and matrix analysis in order to seamlessly introduce matrix decomposition techniques and their applications in subsequent sections. However, we clearly realize our inability to cover all the useful and interesting results concerning matrix decomposition and given the paucity of scope to present this discussion, e.g., the separated analysis of the Euclidean space, Hermitian space, Hilbert space, and things in the complex domain. We refer the reader to literature in the field of linear algebra for a more detailed introduction to the related fields.

Out-of-distribution (OOD) detection is critical to ensuring the reliability and safety of machine learning systems. For instance, in autonomous driving, we would like the driving system to issue an alert and hand over the control to humans when it detects unusual scenes or objects that it has never seen before and cannot make a safe decision. This problem first emerged in 2017 and since then has received increasing attention from the research community, leading to a plethora of methods developed, ranging from classification-based to density-based to distance-based ones. Meanwhile, several other problems are closely related to OOD detection in terms of motivation and methodology. These include anomaly detection (AD), novelty detection (ND), open set recognition (OSR), and outlier detection (OD). Despite having different definitions and problem settings, these problems often confuse readers and practitioners, and as a result, some existing studies misuse terms. In this survey, we first present a generic framework called generalized OOD detection, which encompasses the five aforementioned problems, i.e., AD, ND, OSR, OOD detection, and OD. Under our framework, these five problems can be seen as special cases or sub-tasks, and are easier to distinguish. Then, we conduct a thorough review of each of the five areas by summarizing their recent technical developments. We conclude this survey with open challenges and potential research directions.

北京阿比特科技有限公司