亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Total hip arthroplasty (THA) is a widely used surgical procedure in orthopedics. For THA, it is of clinical significance to analyze the bone structure from the CT images, especially to observe the structure of the acetabulum and femoral head, before the surgical procedure. For such bone structure analyses, deep learning technologies are promising but require high-quality labeled data for the learning, while the data labeling is costly. We address this issue and propose an efficient data annotation pipeline for producing a deep learning-oriented dataset. Our pipeline consists of non-learning-based bone extraction (BE) and acetabulum and femoral head segmentation (AFS) and active-learning-based annotation refinement (AAR). For BE we use the classic graph-cut algorithm. For AFS we propose an improved algorithm, including femoral head boundary localization using first-order and second-order gradient regularization, line-based non-maximum suppression, and anatomy prior-based femoral head extraction. For AAR, we refine the algorithm-produced pseudo labels with the help of trained deep models: we measure the uncertainty based on the disagreement between the original pseudo labels and the deep model predictions, and then find out the samples with the largest uncertainty to ask for manual labeling. Using the proposed pipeline, we construct a large-scale bone structure analyses dataset from more than 300 clinical and diverse CT scans. We perform careful manual labeling for the test set of our data. We then benchmark multiple state-of-the art deep learning-based methods of medical image segmentation using the training and test sets of our data. The extensive experimental results validate the efficacy of the proposed data annotation pipeline. The dataset, related codes and models will be publicly available at //github.com/hitachinsk/THA.

相關內容

Humour is a substantial element of human affect and cognition. Its automatic understanding can facilitate a more naturalistic human-device interaction and the humanisation of artificial intelligence. Current methods of humour detection are solely based on staged data making them inadequate for 'real-world' applications. We address this deficiency by introducing the novel Passau-Spontaneous Football Coach Humour (Passau-SFCH) dataset, comprising of about 11 hours of recordings. The Passau-SFCH dataset is annotated for the presence of humour and its dimensions (sentiment and direction) as proposed in Martin's Humor Style Questionnaire. We conduct a series of experiments, employing pretrained Transformers, convolutional neural networks, and expert-designed features. The performance of each modality (text, audio, video) for spontaneous humour recognition is analysed and their complementarity is investigated. Our findings suggest that for the automatic analysis of humour and its sentiment, facial expressions are most promising, while humour direction can be best modelled via text-based features. The results reveal considerable differences among various subjects, highlighting the individuality of humour usage and style. Further, we observe that a decision-level fusion yields the best recognition result. Finally, we make our code publicly available at //www.github.com/EIHW/passau-sfch. The Passau-SFCH dataset is available upon request.

Transfer learning in Reinforcement Learning (RL) has been widely studied to overcome training issues of Deep-RL, i.e., exploration cost, data availability and convergence time, by introducing a way to enhance training phase with external knowledge. Generally, knowledge is transferred from expert-agents to novices. While this fixes the issue for a novice agent, a good understanding of the task on expert agent is required for such transfer to be effective. As an alternative, in this paper we propose Expert-Free Online Transfer Learning (EF-OnTL), an algorithm that enables expert-free real-time dynamic transfer learning in multi-agent system. No dedicated expert exists, and transfer source agent and knowledge to be transferred are dynamically selected at each transfer step based on agents' performance and uncertainty. To improve uncertainty estimation, we also propose State Action Reward Next-State Random Network Distillation (sars-RND), an extension of RND that estimates uncertainty from RL agent-environment interaction. We demonstrate EF-OnTL effectiveness against a no-transfer scenario and advice-based baselines, with and without expert agents, in three benchmark tasks: Cart-Pole, a grid-based Multi-Team Predator-Prey (mt-pp) and Half Field Offense (HFO). Our results show that EF-OnTL achieve overall comparable performance when compared against advice-based baselines while not requiring any external input nor threshold tuning. EF-OnTL outperforms no-transfer with an improvement related to the complexity of the task addressed.

In precision agriculture, detecting productive crop fields is an essential practice that allows the farmer to evaluate operating performance separately and compare different seed varieties, pesticides, and fertilizers. However, manually identifying productive fields is often a time-consuming and error-prone task. Previous studies explore different methods to detect crop fields using advanced machine learning algorithms, but they often lack good quality labeled data. In this context, we propose a high-quality dataset generated by machine operation combined with Sentinel-2 images tracked over time. As far as we know, it is the first one to overcome the lack of labeled samples by using this technique. In sequence, we apply a semi-supervised classification of unlabeled data and state-of-the-art supervised and self-supervised deep learning methods to detect productive crop fields automatically. Finally, the results demonstrate high accuracy in Positive Unlabeled learning, which perfectly fits the problem where we have high confidence in the positive samples. Best performances have been found in Triplet Loss Siamese given the existence of an accurate dataset and Contrastive Learning considering situations where we do not have a comprehensive labeled dataset available.

With the development of Big data technology, data analysis has become increasingly important. Traditional clustering algorithms such as K-means are highly sensitive to the initial centroid selection and perform poorly on non-convex datasets. In this paper, we address these problems by proposing a data-driven Bregman divergence parameter optimization clustering algorithm (DBGSA), which combines the Universal Gravitational Algorithm to bring similar points closer in the dataset. We construct a gravitational coefficient equation with a special property that gradually reduces the influence factor as the iteration progresses. Furthermore, we introduce the Bregman divergence generalized power mean information loss minimization to identify cluster centers and build a hyperparameter identification optimization model, which effectively solves the problems of manual adjustment and uncertainty in the improved dataset. Extensive experiments are conducted on four simulated datasets and six real datasets. The results demonstrate that DBGSA significantly improves the accuracy of various clustering algorithms by an average of 63.8\% compared to other similar approaches like enhanced clustering algorithms and improved datasets. Additionally, a three-dimensional grid search was established to compare the effects of different parameter values within threshold conditions, and it was discovered the parameter set provided by our model is optimal. This finding provides strong evidence of the high accuracy and robustness of the algorithm.

Contrastive loss has been increasingly used in learning representations from multiple modalities. In the limit, the nature of the contrastive loss encourages modalities to exactly match each other in the latent space. Yet it remains an open question how the modality alignment affects the downstream task performance. In this paper, based on an information-theoretic argument, we first prove that exact modality alignment is sub-optimal in general for downstream prediction tasks. Hence we advocate that the key of better performance lies in meaningful latent modality structures instead of perfect modality alignment. To this end, we propose three general approaches to construct latent modality structures. Specifically, we design 1) a deep feature separation loss for intra-modality regularization; 2) a Brownian-bridge loss for inter-modality regularization; and 3) a geometric consistency loss for both intra- and inter-modality regularization. Extensive experiments are conducted on two popular multi-modal representation learning frameworks: the CLIP-based two-tower model and the ALBEF-based fusion model. We test our model on a variety of tasks including zero/few-shot image classification, image-text retrieval, visual question answering, visual reasoning, and visual entailment. Our method achieves consistent improvements over existing methods, demonstrating the effectiveness and generalizability of our proposed approach on latent modality structure regularization.

Deep models, e.g., CNNs and Vision Transformers, have achieved impressive achievements in many vision tasks in the closed world. However, novel classes emerge from time to time in our ever-changing world, requiring a learning system to acquire new knowledge continually. For example, a robot needs to understand new instructions, and an opinion monitoring system should analyze emerging topics every day. Class-Incremental Learning (CIL) enables the learner to incorporate the knowledge of new classes incrementally and build a universal classifier among all seen classes. Correspondingly, when directly training the model with new class instances, a fatal problem occurs -- the model tends to catastrophically forget the characteristics of former ones, and its performance drastically degrades. There have been numerous efforts to tackle catastrophic forgetting in the machine learning community. In this paper, we survey comprehensively recent advances in deep class-incremental learning and summarize these methods from three aspects, i.e., data-centric, model-centric, and algorithm-centric. We also provide a rigorous and unified evaluation of 16 methods in benchmark image classification tasks to find out the characteristics of different algorithms empirically. Furthermore, we notice that the current comparison protocol ignores the influence of memory budget in model storage, which may result in unfair comparison and biased results. Hence, we advocate fair comparison by aligning the memory budget in evaluation, as well as several memory-agnostic performance measures. The source code to reproduce these evaluations is available at //github.com/zhoudw-zdw/CIL_Survey/

We hypothesize that due to the greedy nature of learning in multi-modal deep neural networks, these models tend to rely on just one modality while under-fitting the other modalities. Such behavior is counter-intuitive and hurts the models' generalization, as we observe empirically. To estimate the model's dependence on each modality, we compute the gain on the accuracy when the model has access to it in addition to another modality. We refer to this gain as the conditional utilization rate. In the experiments, we consistently observe an imbalance in conditional utilization rates between modalities, across multiple tasks and architectures. Since conditional utilization rate cannot be computed efficiently during training, we introduce a proxy for it based on the pace at which the model learns from each modality, which we refer to as the conditional learning speed. We propose an algorithm to balance the conditional learning speeds between modalities during training and demonstrate that it indeed addresses the issue of greedy learning. The proposed algorithm improves the model's generalization on three datasets: Colored MNIST, Princeton ModelNet40, and NVIDIA Dynamic Hand Gesture.

Unsupervised domain adaptation has recently emerged as an effective paradigm for generalizing deep neural networks to new target domains. However, there is still enormous potential to be tapped to reach the fully supervised performance. In this paper, we present a novel active learning strategy to assist knowledge transfer in the target domain, dubbed active domain adaptation. We start from an observation that energy-based models exhibit free energy biases when training (source) and test (target) data come from different distributions. Inspired by this inherent mechanism, we empirically reveal that a simple yet efficient energy-based sampling strategy sheds light on selecting the most valuable target samples than existing approaches requiring particular architectures or computation of the distances. Our algorithm, Energy-based Active Domain Adaptation (EADA), queries groups of targe data that incorporate both domain characteristic and instance uncertainty into every selection round. Meanwhile, by aligning the free energy of target data compact around the source domain via a regularization term, domain gap can be implicitly diminished. Through extensive experiments, we show that EADA surpasses state-of-the-art methods on well-known challenging benchmarks with substantial improvements, making it a useful option in the open world. Code is available at //github.com/BIT-DA/EADA.

Due to their increasing spread, confidence in neural network predictions became more and more important. However, basic neural networks do not deliver certainty estimates or suffer from over or under confidence. Many researchers have been working on understanding and quantifying uncertainty in a neural network's prediction. As a result, different types and sources of uncertainty have been identified and a variety of approaches to measure and quantify uncertainty in neural networks have been proposed. This work gives a comprehensive overview of uncertainty estimation in neural networks, reviews recent advances in the field, highlights current challenges, and identifies potential research opportunities. It is intended to give anyone interested in uncertainty estimation in neural networks a broad overview and introduction, without presupposing prior knowledge in this field. A comprehensive introduction to the most crucial sources of uncertainty is given and their separation into reducible model uncertainty and not reducible data uncertainty is presented. The modeling of these uncertainties based on deterministic neural networks, Bayesian neural networks, ensemble of neural networks, and test-time data augmentation approaches is introduced and different branches of these fields as well as the latest developments are discussed. For a practical application, we discuss different measures of uncertainty, approaches for the calibration of neural networks and give an overview of existing baselines and implementations. Different examples from the wide spectrum of challenges in different fields give an idea of the needs and challenges regarding uncertainties in practical applications. Additionally, the practical limitations of current methods for mission- and safety-critical real world applications are discussed and an outlook on the next steps towards a broader usage of such methods is given.

北京阿比特科技有限公司