Realistic digital models of plant leaves are crucial to fluid dynamics simulations of droplets for optimising agrochemical spray technologies. The presence and nature of small features (on the order of 100$\mathrm{\mu m}$) such as ridges and hairs on the surface have been shown to significantly affect the droplet evaporation, and thus the leaf's potential uptake of active ingredients. We show that these microstructures can be captured by implicit radial basis function partition of unity (RBFPU) surface reconstructions from micro-CT scan datasets. However, scanning a whole leaf ($20\mathrm{cm^2}$) at micron resolutions is infeasible due to both extremely large data storage requirements and scanner time constraints. Instead, we micro-CT scan only a small segment of a wheat leaf ($4\mathrm{mm^2}$). We fit a RBFPU implicit surface to this segment, and an explicit RBFPU surface to a lower resolution laser scan of the whole leaf. Parameterising the leaf using a locally orthogonal coordinate system, we then replicate the now resolved microstructure many times across a larger, coarser, representation of the leaf surface that captures important macroscale features, such as its size, shape, and orientation. The edge of one segment of the microstructure model is blended into its neighbour naturally by the partition of unity method. The result is one implicit surface reconstruction that captures the wheat leaf's features at both the micro- and macro-scales.
Speaker localization for binaural microphone arrays has been widely studied for applications such as speech communication, video conferencing, and robot audition. Many methods developed for this task, including the direct path dominance (DPD) test, share common stages in their processing, which include transformation using the short-time Fourier transform (STFT), and a direction of arrival (DOA) search that is based on the head related transfer function (HRTF) set. In this paper, alternatives to these processing stages, motivated by human hearing, are proposed. These include incorporating an auditory filter bank to replace the STFT, and a new DOA search based on transformed HRTF as steering vectors. A simulation study and an experimental study are conducted to validate the proposed alternatives, and both are applied to two binaural DOA estimation methods; the results show that the proposed method compares favorably with current methods.
We systematically study a wide variety of generative models spanning semantically-diverse image datasets to understand and improve the feature extractors and metrics used to evaluate them. Using best practices in psychophysics, we measure human perception of image realism for generated samples by conducting the largest experiment evaluating generative models to date, and find that no existing metric strongly correlates with human evaluations. Comparing to 17 modern metrics for evaluating the overall performance, fidelity, diversity, rarity, and memorization of generative models, we find that the state-of-the-art perceptual realism of diffusion models as judged by humans is not reflected in commonly reported metrics such as FID. This discrepancy is not explained by diversity in generated samples, though one cause is over-reliance on Inception-V3. We address these flaws through a study of alternative self-supervised feature extractors, find that the semantic information encoded by individual networks strongly depends on their training procedure, and show that DINOv2-ViT-L/14 allows for much richer evaluation of generative models. Next, we investigate data memorization, and find that generative models do memorize training examples on simple, smaller datasets like CIFAR10, but not necessarily on more complex datasets like ImageNet. However, our experiments show that current metrics do not properly detect memorization: none in the literature is able to separate memorization from other phenomena such as underfitting or mode shrinkage. To facilitate further development of generative models and their evaluation we release all generated image datasets, human evaluation data, and a modular library to compute 17 common metrics for 9 different encoders at //github.com/layer6ai-labs/dgm-eval.
This contribution introduces a model order reduction approach for an advection-reaction problem with a parametrized reaction function. The underlying discretization uses an ultraweak formulation with an $L^2$-like trial space and an 'optimal' test space as introduced by Demkowicz et al. This ensures the stability of the discretization and in addition allows for a symmetric reformulation of the problem in terms of a dual solution which can also be interpreted as the normal equations of an adjoint least-squares problem. Classic model order reduction techniques can then be applied to the space of dual solutions which also immediately gives a reduced primal space. We show that the necessary computations do not require the reconstruction of any primal solutions and can instead be performed entirely on the space of dual solutions. We prove exponential convergence of the Kolmogorov $N$-width and show that a greedy algorithm produces quasi-optimal approximation spaces for both the primal and the dual solution space. Numerical experiments based on the benchmark problem of a catalytic filter confirm the applicability of the proposed method.
For multi-scale problems, the conventional physics-informed neural networks (PINNs) face some challenges in obtaining available predictions. In this paper, based on PINNs, we propose a practical deep learning framework for multi-scale problems by reconstructing the loss function and associating it with special neural network architectures. New PINN methods derived from the improved PINN framework differ from the conventional PINN method mainly in two aspects. First, the new methods use a novel loss function by modifying the standard loss function through a (grouping) regularization strategy. The regularization strategy implements a different power operation on each loss term so that all loss terms composing the loss function are of approximately the same order of magnitude, which makes all loss terms be optimized synchronously during the optimization process. Second, for the multi-frequency or high-frequency problems, in addition to using the modified loss function, new methods upgrade the neural network architecture from the common fully-connected neural network to special network architectures such as the Fourier feature architecture, and the integrated architecture developed by us. The combination of the above two techniques leads to a significant improvement in the computational accuracy of multi-scale problems. Several challenging numerical examples demonstrate the effectiveness of the proposed methods. The proposed methods not only significantly outperform the conventional PINN method in terms of computational efficiency and computational accuracy, but also compare favorably with the state-of-the-art methods in the recent literature. The improved PINN framework facilitates better application of PINNs to multi-scale problems.
Stress prediction in porous materials and structures is challenging due to the high computational cost associated with direct numerical simulations. Convolutional Neural Network (CNN) based architectures have recently been proposed as surrogates to approximate and extrapolate the solution of such multiscale simulations. These methodologies are usually limited to 2D problems due to the high computational cost of 3D voxel based CNNs. We propose a novel geometric learning approach based on a Graph Neural Network (GNN) that efficiently deals with three-dimensional problems by performing convolutions over 2D surfaces only. Following our previous developments using pixel-based CNN, we train the GNN to automatically add local fine-scale stress corrections to an inexpensively computed coarse stress prediction in the porous structure of interest. Our method is Bayesian and generates densities of stress fields, from which credible intervals may be extracted. As a second scientific contribution, we propose to improve the extrapolation ability of our network by deploying a strategy of online physics-based corrections. Specifically, we condition the posterior predictions of our probabilistic predictions to satisfy partial equilibrium at the microscale, at the inference stage. This is done using an Ensemble Kalman algorithm, to ensure tractability of the Bayesian conditioning operation. We show that this innovative methodology allows us to alleviate the effect of undesirable biases observed in the outputs of the uncorrected GNN, and improves the accuracy of the predictions in general.
The joint analysis of multimodal neuroimaging data is critical in the field of brain research because it reveals complex interactive relationships between neurobiological structures and functions. In this study, we focus on investigating the effects of structural imaging (SI) features, including white matter micro-structure integrity (WMMI) and cortical thickness, on the whole brain functional connectome (FC) network. To achieve this goal, we propose a network-based vector-on-matrix regression model to characterize the FC-SI association patterns. We have developed a novel multi-level dense bipartite and clique subgraph extraction method to identify which subsets of spatially specific SI features intensively influence organized FC sub-networks. The proposed method can simultaneously identify highly correlated structural-connectomic association patterns and suppress false positive findings while handling millions of potential interactions. We apply our method to a multimodal neuroimaging dataset of 4,242 participants from the UK Biobank to evaluate the effects of whole-brain WMMI and cortical thickness on the resting-state FC. The results reveal that the WMMI on corticospinal tracts and inferior cerebellar peduncle significantly affect functional connections of sensorimotor, salience, and executive sub-networks with an average correlation of 0.81 (p<0.001).
Causal representation learning algorithms discover lower-dimensional representations of data that admit a decipherable interpretation of cause and effect; as achieving such interpretable representations is challenging, many causal learning algorithms utilize elements indicating prior information, such as (linear) structural causal models, interventional data, or weak supervision. Unfortunately, in exploratory causal representation learning, such elements and prior information may not be available or warranted. Alternatively, scientific datasets often have multiple modalities or physics-based constraints, and the use of such scientific, multimodal data has been shown to improve disentanglement in fully unsupervised settings. Consequently, we introduce a causal representation learning algorithm (causalPIMA) that can use multimodal data and known physics to discover important features with causal relationships. Our innovative algorithm utilizes a new differentiable parametrization to learn a directed acyclic graph (DAG) together with a latent space of a variational autoencoder in an end-to-end differentiable framework via a single, tractable evidence lower bound loss function. We place a Gaussian mixture prior on the latent space and identify each of the mixtures with an outcome of the DAG nodes; this novel identification enables feature discovery with causal relationships. Tested against a synthetic and a scientific dataset, our results demonstrate the capability of learning an interpretable causal structure while simultaneously discovering key features in a fully unsupervised setting.
This work presents a comparative study to numerically compute impulse approximate controls for parabolic equations with various boundary conditions. Theoretical controllability results have been recently investigated using a logarithmic convexity estimate at a single time based on a Carleman commutator approach. We propose a numerical algorithm for computing the impulse controls with minimal $L^2$-norms by adapting a penalized Hilbert Uniqueness Method (HUM) combined with a Conjugate Gradient (CG) method. We consider static boundary conditions (Dirichlet and Neumann) and dynamic boundary conditions. Some numerical experiments based on our developed algorithm are given to validate and compare the theoretical impulse controllability results.
Conformal inference is a fundamental and versatile tool that provides distribution-free guarantees for many machine learning tasks. We consider the transductive setting, where decisions are made on a test sample of $m$ new points, giving rise to $m$ conformal $p$-values. {While classical results only concern their marginal distribution, we show that their joint distribution follows a P\'olya urn model, and establish a concentration inequality for their empirical distribution function.} The results hold for arbitrary exchangeable scores, including {\it adaptive} ones that can use the covariates of the test+calibration samples at training stage for increased accuracy. We demonstrate the usefulness of these theoretical results through uniform, in-probability guarantees for two machine learning tasks of current interest: interval prediction for transductive transfer learning and novelty detection based on two-class classification.
Threshold selection is a fundamental problem in any threshold-based extreme value analysis. While models are asymptotically motivated, selecting an appropriate threshold for finite samples can be difficult through standard methods. Inference can also be highly sensitive to the choice of threshold. Too low a threshold choice leads to bias in the fit of the extreme value model, while too high a choice leads to unnecessary additional uncertainty in the estimation of model parameters. In this paper, we develop a novel methodology for automated threshold selection that directly tackles this bias-variance trade-off. We also develop a method to account for the uncertainty in this threshold choice and propagate this uncertainty through to high quantile inference. Through a simulation study, we demonstrate the effectiveness of our method for threshold selection and subsequent extreme quantile estimation. We apply our method to the well-known, troublesome example of the River Nidd dataset.