亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

To efficiently exploit the massive amounts of raw data that are increasingly being generated in mobile edge networks, federated learning (FL) has emerged as a promising distributed learning technique. By collaboratively training a shared learning model on edge devices, raw data transmission and storage are replaced by the exchange of the local computed parameters/gradients in FL, which thus helps address latency and privacy issues. However, the number of resource blocks when using traditional orthogonal transmission strategies for FL linearly scales with the number of participating devices, which conflicts with the scarcity of communication resources. To tackle this issue, over-the-air computation (AirComp) has emerged recently which leverages the inherent superposition property of wireless channels to perform one-shot model aggregation. However, the aggregation accuracy in AirComp suffers from the unfavorable wireless propagation environment. In this paper, we consider the use of intelligent reflecting surfaces (IRSs) to mitigate this problem and improve FL performance with AirComp. Specifically, a performance-oriented design scheme that directly minimizes the optimality gap of the loss function is proposed to accelerate the convergence of AirComp-based FL. We first analyze the convergence behavior of the FL procedure with the absence of channel fading and noise. Based on the obtained optimality gap which characterizes the impact of channel fading and noise in different communication rounds on the ultimate performance of FL, we propose both online and offline approaches to tackle the resulting design problem. Simulation results demonstrate that such a performance-oriented design strategy can achieve higher test accuracy than the conventional isolated mean square error (MSE) minimization approach in FL.

相關內容

Water consumption remains a major concern among the world's future challenges. For applications like load monitoring and demand response, deep learning models are trained using enormous volumes of consumption data in smart cities. On the one hand, the information used is private. For instance, the precise information gathered by a smart meter that is a part of the system's IoT architecture at a consumer's residence may give details about the appliances and, consequently, the consumer's behavior at home. On the other hand, enormous data volumes with sufficient variation are needed for the deep learning models to be trained properly. This paper introduces a novel model for water consumption prediction in smart cities while preserving privacy regarding monthly consumption. The proposed approach leverages federated learning (FL) as a machine learning paradigm designed to train a machine learning model in a distributed manner while avoiding sharing the users data with a central training facility. In addition, this approach is promising to reduce the overhead utilization through decreasing the frequency of data transmission between the users and the central entity. Extensive simulation illustrate that the proposed approach shows an enhancement in predicting water consumption for different households.

Federated Learning is a distributed machine learning environment, which ensures that clients complete collaborative training without sharing private data, only by exchanging parameters. However, the data does not satisfy the same distribution and the computing resources of clients are different, which brings challenges to the related research. To better solve the above heterogeneous problems, we designed a novel federated learning method. The local model consists of the pre-trained model as the backbone and fully connected layers as the head. The backbone can extract features for the head, and the embedding vector of classes is shared between clients to optimize the head so that the local model can perform better. By sharing the embedding vector of classes, instead of parameters based on gradient space, clients can better adapt to private data, and it is more efficient in the communication between the server and clients. To better protect privacy, we proposed a privacy-preserving hybrid method to add noise to the embedding vector of classes, which has less impact on the local model performance under the premise of satisfying differential privacy. We conduct a comprehensive evaluation with other federated learning methods on the self-built vehicle dataset under non-independent identically distributed(Non-IID)

The industrialization of catalytic processes is of far more importance today than it has ever been before and kinetic models are essential tools for their industrialization. Kinetic models affect the design, the optimization and the control of catalytic processes, but they are not easy to obtain. Classical paradigms, such as mechanistic modeling require substantial domain knowledge, while data-driven and hybrid modeling lack interpretability. Consequently, a different approach called automated knowledge discovery has recently gained popularity. Many methods under this paradigm have been developed, where ALAMO, SINDy and genetic programming are notable examples. However, these methods suffer from important drawbacks: they require assumptions about model structures, scale poorly, lack robust and well-founded model selection routines, and they are sensitive to noise. To overcome these challenges, the present work constructs two methodological frameworks, Automated Discovery of Kinetics using a Strong/Weak formulation of symbolic regression, ADoK-S and ADoK-W, for the automated generation of catalytic kinetic models. We leverage genetic programming for model generation, a sequential optimization routine for model refinement, and a robust criterion for model selection. Both frameworks are tested against three computational case studies of increasing complexity. We showcase their ability to retrieve the underlying kinetic rate model with a limited amount of noisy data from the catalytic system, indicating a strong potential for chemical reaction engineering applications.

Federated Reinforcement Learning (FedRL) encourages distributed agents to learn collectively from each other's experience to improve their performance without exchanging their raw trajectories. The existing work on FedRL assumes that all participating agents are homogeneous, which requires all agents to share the same policy parameterization (e.g., network architectures and training configurations). However, in real-world applications, agents are often in disagreement about the architecture and the parameters, possibly also because of disparate computational budgets. Because homogeneity is not given in practice, we introduce the problem setting of Federated Reinforcement Learning with Heterogeneous And bLack-box agEnts (FedRL-HALE). We present the unique challenges this new setting poses and propose the Federated Heterogeneous Q-Learning (FedHQL) algorithm that principally addresses these challenges. We empirically demonstrate the efficacy of FedHQL in boosting the sample efficiency of heterogeneous agents with distinct policy parameterization using standard RL tasks.

Even though recent years have seen many attacks exposing severe vulnerabilities in Federated Learning (FL), a holistic understanding of what enables these attacks and how they can be mitigated effectively is still lacking. In this work, we demystify the inner workings of existing (targeted) attacks. We provide new insights into why these attacks are possible and why a definitive solution to FL robustness is challenging. We show that the need for ML algorithms to memorize tail data has significant implications for FL integrity. This phenomenon has largely been studied in the context of privacy; our analysis sheds light on its implications for ML integrity. We show that certain classes of severe attacks can be mitigated effectively by enforcing constraints such as norm bounds on clients' updates. We investigate how to efficiently incorporate these constraints into secure FL protocols in the single-server setting. Based on this, we propose RoFL, a new secure FL system that extends secure aggregation with privacy-preserving input validation. Specifically, RoFL can enforce constraints such as $L_2$ and $L_\infty$ bounds on high-dimensional encrypted model updates.

Real-time machine learning has recently attracted significant interest due to its potential to support instantaneous learning, adaptation, and decision making in a wide range of application domains, including self-driving vehicles, intelligent transportation, and industry automation. We investigate real-time ML in a federated edge intelligence (FEI) system, an edge computing system that implements federated learning (FL) solutions based on data samples collected and uploaded from decentralized data networks. FEI systems often exhibit heterogenous communication and computational resource distribution, as well as non-i.i.d. data samples, resulting in long model training time and inefficient resource utilization. Motivated by this fact, we propose a time-sensitive federated learning (TS-FL) framework to minimize the overall run-time for collaboratively training a shared ML model. Training acceleration solutions for both TS-FL with synchronous coordination (TS-FL-SC) and asynchronous coordination (TS-FL-ASC) are investigated. To address straggler effect in TS-FL-SC, we develop an analytical solution to characterize the impact of selecting different subsets of edge servers on the overall model training time. A server dropping-based solution is proposed to allow slow-performance edge servers to be removed from participating in model training if their impact on the resulting model accuracy is limited. A joint optimization algorithm is proposed to minimize the overall time consumption of model training by selecting participating edge servers, local epoch number. We develop an analytical expression to characterize the impact of staleness effect of asynchronous coordination and straggler effect of FL on the time consumption of TS-FL-ASC. Experimental results show that TS-FL-SC and TS-FL-ASC can provide up to 63% and 28% of reduction, in the overall model training time, respectively.

Federated Learning (FL) is a well-established technique for privacy preserving distributed training. Much attention has been given to various aspects of FL training. A growing number of applications that consume FL-trained models, however, increasingly operate under dynamically and unpredictably variable conditions, rendering a single model insufficient. We argue for training a global family of models cost efficiently in a federated fashion. Training them independently for different tradeoff points incurs $O(k)$ cost for any k architectures of interest, however. Straightforward applications of FL techniques to recent weight-shared training approaches is either infeasible or prohibitively expensive. We propose SuperFed - an architectural framework that incurs $O(1)$ cost to co-train a large family of models in a federated fashion by leveraging weight-shared learning. We achieve an order of magnitude cost savings on both communication and computation by proposing two novel training mechanisms: (a) distribution of weight-shared models to federated clients, (b) central aggregation of arbitrarily overlapping weight-shared model parameters. The combination of these mechanisms is shown to reach an order of magnitude (9.43x) reduction in computation and communication cost for training a $5*10^{18}$-sized family of models, compared to independently training as few as $k = 9$ DNNs without any accuracy loss.

Federated learning (FL) has been proposed to protect data privacy and virtually assemble the isolated data silos by cooperatively training models among organizations without breaching privacy and security. However, FL faces heterogeneity from various aspects, including data space, statistical, and system heterogeneity. For example, collaborative organizations without conflict of interest often come from different areas and have heterogeneous data from different feature spaces. Participants may also want to train heterogeneous personalized local models due to non-IID and imbalanced data distribution and various resource-constrained devices. Therefore, heterogeneous FL is proposed to address the problem of heterogeneity in FL. In this survey, we comprehensively investigate the domain of heterogeneous FL in terms of data space, statistical, system, and model heterogeneity. We first give an overview of FL, including its definition and categorization. Then, We propose a precise taxonomy of heterogeneous FL settings for each type of heterogeneity according to the problem setting and learning objective. We also investigate the transfer learning methodologies to tackle the heterogeneity in FL. We further present the applications of heterogeneous FL. Finally, we highlight the challenges and opportunities and envision promising future research directions toward new framework design and trustworthy approaches.

Federated Learning (FL) is a decentralized machine-learning paradigm, in which a global server iteratively averages the model parameters of local users without accessing their data. User heterogeneity has imposed significant challenges to FL, which can incur drifted global models that are slow to converge. Knowledge Distillation has recently emerged to tackle this issue, by refining the server model using aggregated knowledge from heterogeneous users, other than directly averaging their model parameters. This approach, however, depends on a proxy dataset, making it impractical unless such a prerequisite is satisfied. Moreover, the ensemble knowledge is not fully utilized to guide local model learning, which may in turn affect the quality of the aggregated model. Inspired by the prior art, we propose a data-free knowledge distillation} approach to address heterogeneous FL, where the server learns a lightweight generator to ensemble user information in a data-free manner, which is then broadcasted to users, regulating local training using the learned knowledge as an inductive bias. Empirical studies powered by theoretical implications show that, our approach facilitates FL with better generalization performance using fewer communication rounds, compared with the state-of-the-art.

Federated learning enables multiple parties to collaboratively train a machine learning model without communicating their local data. A key challenge in federated learning is to handle the heterogeneity of local data distribution across parties. Although many studies have been proposed to address this challenge, we find that they fail to achieve high performance in image datasets with deep learning models. In this paper, we propose MOON: model-contrastive federated learning. MOON is a simple and effective federated learning framework. The key idea of MOON is to utilize the similarity between model representations to correct the local training of individual parties, i.e., conducting contrastive learning in model-level. Our extensive experiments show that MOON significantly outperforms the other state-of-the-art federated learning algorithms on various image classification tasks.

北京阿比特科技有限公司