Drawing from memory the face of a friend you have not seen in years is a difficult task. However, if you happen to cross paths, you would easily recognize each other. The biological memory is equipped with an impressive compression algorithm that can store the essential, and then infer the details to match perception. The Willshaw Memory is a simple abstract model for cortical computations which implements mechanisms of biological memories. Using our recently proposed sparse coding prescription for visual patterns, this model can store and retrieve an impressive amount of real-world data in a fault-tolerant manner. In this paper, we extend the capabilities of the basic Associative Memory Model by using a Multiple-Modality framework. In this setting, the memory stores several modalities (e.g., visual, or textual) of each pattern simultaneously. After training, the memory can be used to infer missing modalities when just a subset is perceived. Using a simple encoder-memory-decoder architecture, and a newly proposed iterative retrieval algorithm for the Willshaw Model, we perform experiments on the MNIST dataset. By storing both the images and labels as modalities, a single Memory can be used not only to retrieve and complete patterns but also to classify and generate new ones. We further discuss how this model could be used for other learning tasks, thus serving as a biologically-inspired framework for learning.
While we do not always use words, communicating what we want to an AI is a conversation -- with ourselves as well as with it, a recurring loop with optional steps depending on the complexity of the situation and our request. Any given conversation of this type may include: (a) the human forming an intent, (b) the human expressing that intent as a command or utterance, (c) the AI performing one or more rounds of inference on that command to resolve ambiguities and/or requesting clarifications from the human, (d) the AI showing the inferred meaning of the command and/or its execution on current and future situations or data, (e) the human hopefully correctly recognizing whether the AI's interpretation actually aligns with their intent. In the process, they may (f) update their model of the AI's capabilities and characteristics, (g) update their model of the situations in which the AI is executing its interpretation of their intent, (h) confirm or refine their intent, and (i) revise their expression of their intent to the AI, where the loop repeats until the human is satisfied. With these critical cognitive and computational steps within this back-and-forth laid out as a framework, it is easier to anticipate where communication can fail, and design algorithms and interfaces that ameliorate those failure points.
Although recent deep learning based gaze estimation approaches have achieved much improvement, we still know little about how gaze features are connected to the physics of gaze. In this paper, we try to answer this question by analyzing the gaze feature manifold. Our analysis revealed the insight that the geodesic distance between gaze features is consistent with the gaze differences between samples. According to this finding, we construct the Physics- Consistent Feature (PCF) in an analytical way, which connects gaze feature to the physical definition of gaze. We further propose the PCFGaze framework that directly optimizes gaze feature space by the guidance of PCF. Experimental results demonstrate that the proposed framework alleviates the overfitting problem and significantly improves cross-domain gaze estimation accuracy without extra training data. The insight of gaze feature has the potential to benefit other regression tasks with physical meanings.
Turbulent flows strain resources, both memory and CPU speed. The DLN method has greater accuracy and allows larger time steps, requiring less memory and fewer FLOPS. The DLN method can also be implemented adaptively. The classical Smagorinsky model, as an effective way to approximate a (resolved) mean velocity, has recently been corrected to represent a flow of energy from unresolved fluctuations to the (resolved) mean velocity. In this paper, we apply a family of second-order, G-stable time-stepping methods proposed by Dahlquist, Liniger, and Nevanlinna (the DLN method) to one corrected Smagorinsky model and provide the detailed numerical analysis of the stability and consistency. We prove that the numerical solutions under any arbitrary time step sequences are unconditionally stable in the long term and converge at second order. We also provide error estimate under certain time step condition. Numerical tests are given to confirm the rate of convergence and also to show that the adaptive DLN algorithm helps to control numerical dissipation so that backscatter is visible.
Graph Neural Networks (GNNs) are state-of-the-art models for performing prediction tasks on graphs. While existing GNNs have shown great performance on various tasks related to graphs, little attention has been paid to the scenario where out-of-distribution (OOD) nodes exist in the graph during training and inference. Borrowing the concept from CV and NLP, we define OOD nodes as nodes with labels unseen from the training set. Since a lot of networks are automatically constructed by programs, real-world graphs are often noisy and may contain nodes from unknown distributions. In this work, we define the problem of graph learning with out-of-distribution nodes. Specifically, we aim to accomplish two tasks: 1) detect nodes which do not belong to the known distribution and 2) classify the remaining nodes to be one of the known classes. We demonstrate that the connection patterns in graphs are informative for outlier detection, and propose Out-of-Distribution Graph Attention Network (OODGAT), a novel GNN model which explicitly models the interaction between different kinds of nodes and separate inliers from outliers during feature propagation. Extensive experiments show that OODGAT outperforms existing outlier detection methods by a large margin, while being better or comparable in terms of in-distribution classification.
Australia is a leading AI nation with strong allies and partnerships. Australia has prioritised robotics, AI, and autonomous systems to develop sovereign capability for the military. Australia commits to Article 36 reviews of all new means and methods of warfare to ensure weapons and weapons systems are operated within acceptable systems of control. Additionally, Australia has undergone significant reviews of the risks of AI to human rights and within intelligence organisations and has committed to producing ethics guidelines and frameworks in Security and Defence. Australia is committed to OECD's values-based principles for the responsible stewardship of trustworthy AI as well as adopting a set of National AI ethics principles. While Australia has not adopted an AI governance framework specifically for Defence; Defence Science has published 'A Method for Ethical AI in Defence' (MEAID) technical report which includes a framework and pragmatic tools for managing ethical and legal risks for military applications of AI.
Search in social networks such as Facebook poses different challenges than in classical web search: besides the query text, it is important to take into account the searcher's context to provide relevant results. Their social graph is an integral part of this context and is a unique aspect of Facebook search. While embedding-based retrieval (EBR) has been applied in eb search engines for years, Facebook search was still mainly based on a Boolean matching model. In this paper, we discuss the techniques for applying EBR to a Facebook Search system. We introduce the unified embedding framework developed to model semantic embeddings for personalized search, and the system to serve embedding-based retrieval in a typical search system based on an inverted index. We discuss various tricks and experiences on end-to-end optimization of the whole system, including ANN parameter tuning and full-stack optimization. Finally, we present our progress on two selected advanced topics about modeling. We evaluated EBR on verticals for Facebook Search with significant metrics gains observed in online A/B experiments. We believe this paper will provide useful insights and experiences to help people on developing embedding-based retrieval systems in search engines.
Deep neural networks (DNNs) are successful in many computer vision tasks. However, the most accurate DNNs require millions of parameters and operations, making them energy, computation and memory intensive. This impedes the deployment of large DNNs in low-power devices with limited compute resources. Recent research improves DNN models by reducing the memory requirement, energy consumption, and number of operations without significantly decreasing the accuracy. This paper surveys the progress of low-power deep learning and computer vision, specifically in regards to inference, and discusses the methods for compacting and accelerating DNN models. The techniques can be divided into four major categories: (1) parameter quantization and pruning, (2) compressed convolutional filters and matrix factorization, (3) network architecture search, and (4) knowledge distillation. We analyze the accuracy, advantages, disadvantages, and potential solutions to the problems with the techniques in each category. We also discuss new evaluation metrics as a guideline for future research.
In Multi-Label Text Classification (MLTC), one sample can belong to more than one class. It is observed that most MLTC tasks, there are dependencies or correlations among labels. Existing methods tend to ignore the relationship among labels. In this paper, a graph attention network-based model is proposed to capture the attentive dependency structure among the labels. The graph attention network uses a feature matrix and a correlation matrix to capture and explore the crucial dependencies between the labels and generate classifiers for the task. The generated classifiers are applied to sentence feature vectors obtained from the text feature extraction network (BiLSTM) to enable end-to-end training. Attention allows the system to assign different weights to neighbor nodes per label, thus allowing it to learn the dependencies among labels implicitly. The results of the proposed model are validated on five real-world MLTC datasets. The proposed model achieves similar or better performance compared to the previous state-of-the-art models.
Deep learning has penetrated all aspects of our lives and brought us great convenience. However, the process of building a high-quality deep learning system for a specific task is not only time-consuming but also requires lots of resources and relies on human expertise, which hinders the development of deep learning in both industry and academia. To alleviate this problem, a growing number of research projects focus on automated machine learning (AutoML). In this paper, we provide a comprehensive and up-to-date study on the state-of-the-art AutoML. First, we introduce the AutoML techniques in details according to the machine learning pipeline. Then we summarize existing Neural Architecture Search (NAS) research, which is one of the most popular topics in AutoML. We also compare the models generated by NAS algorithms with those human-designed models. Finally, we present several open problems for future research.
The era of big data provides researchers with convenient access to copious data. However, people often have little knowledge about it. The increasing prevalence of big data is challenging the traditional methods of learning causality because they are developed for the cases with limited amount of data and solid prior causal knowledge. This survey aims to close the gap between big data and learning causality with a comprehensive and structured review of traditional and frontier methods and a discussion about some open problems of learning causality. We begin with preliminaries of learning causality. Then we categorize and revisit methods of learning causality for the typical problems and data types. After that, we discuss the connections between learning causality and machine learning. At the end, some open problems are presented to show the great potential of learning causality with data.