Unmanned aerial vehicles (UAVs) can be integrated into wireless sensor networks (WSNs) for smart city applications in several ways. Among them, a UAV can be employed as a relay in a "store-carry and forward" fashion by uploading data from ground sensors and metering devices and, then, downloading it to a central unit. However, both the uploading and downloading phases can be prone to potential threats and attacks. As a legacy from traditional wireless networks, the jamming attack is still one of the major and serious threats to UAV-aided communications, especially when also the jammer is mobile, e.g., it is mounted on a UAV or inside a terrestrial vehicle. In this paper, we investigate anti-jamming communications for UAV-aided WSNs operating over doubly-selective channels in the downloading phase. In such a scenario, the signals transmitted by the UAV and the malicious mobile jammer undergo both time dispersion due to multipath propagation effects and frequency dispersion caused by their mobility. To suppress high-power jamming signals, we propose a blind physical-layer technique that jointly detects the UAV and jammer symbols through serial disturbance cancellation based on symbol-level post-sorting of the detector output. Amplitudes, phases, time delays, and Doppler shifts - required to implement the proposed detection strategy - are blindly estimated from data through the use of algorithms that exploit the almost-cyclostationarity properties of the received signal and the detailed structure of multicarrier modulation format. Simulation results corroborate the anti-jamming capabilities of the proposed method, for different mobility scenarios of the jammer.
In this paper, we study a general multi-cluster wireless powered communication network (WPCN) with user cooperation under harvest-then-transmit (HTT) protocol where the hybrid access point (HAP) as well as each user is equipped with multiple antennas. In the downlink phase of HTT, the HAP employs beamforming to transfer energy to the users. In the uplink phase, users in each cluster transmit their signals to the HAP and to their cluster heads (CHs). Afterward, the CHs first relay the signals of their cluster users and then transmit their own information signals to the HAP. The aim is to design the energy beamforming (EB) matrix, transmit covariance matrices of the users and time allocations among energy transfer and cooperation phases in order to optimize the max-min and sum throughputs of the network. The corresponding maximization problems are non-convex and NP-hard in general. We devise iterative algorithm based on alternating optimization (AO) and then the minorization-maximization (MM) technique is used to deal with the non-convex sub-problems with respect to (w.r.t.) the EB and covariance matrices in each iteration. We recast the resulting sub-problems as a convex second order cone programming (SOCP) and quadratic constraint quadratic programming (QCQP) for the max-min and sum throughput maximization problems, respectively. We also consider imperfect channel state information (CSI) at the HAP and CHs and non-linearity in energy harvesting (EH) circuits. Numerical examples show that the proposed cooperative method can effectively improve the achievable throughput in the multi-cluster wireless powered communication under various setups.
Fruit flies are one of the most harmful insect species to fruit yields. In AlertTrap, implementation of SSD architecture with different state-of-the-art backbone feature extractors such as MobileNetV1 and MobileNetV2 appear to be potential solutions for the real-time detection problem. SSD-MobileNetV1 and SSD-MobileNetV2 perform well and result in [email protected] of 0.957 and 1.0 respectively. YOLOv4-tiny outperforms the SSD family with 1.0 in [email protected]; however, its throughput velocity is slightly slower.
The reconfigurable intelligent surface (RIS) has arose an upsurging research interest recently due to its promising outlook in 5G-and-beyond wireless networks. With the assistance of RIS, the wireless propagation environment is no longer static and could be customized to support diverse service requirements. In this paper, we will approach the rate maximization problems in RIS-aided wireless networks by considering the beamforming and reflecting design jointly. Three representative design problems from different system settings are investigated based on a proposed unified algorithmic framework via the block minorization-maximization (BMM) method. Extensions and generalizations of the proposed framework in dealing with some other related problems are further presented. Merits of the proposed algorithms are demonstrated through numerical simulations in comparison with the state-of-the-art methods.
Cell-free massive MIMO is one of the key technologies for future wireless communications, in which users are simultaneously and jointly served by all access points (APs). In this paper, we investigate the minimum mean square error (MMSE) estimation of effective channel coefficients in cell-free massive MIMO systems with massive connectivity. To facilitate the theoretical analysis, only single measurement vector (SMV) based MMSE estimation is considered in this paper, i.e., the MMSE estimation is performed based on the received pilot signals at each AP separately. Inspired by the decoupling principle of replica symmetric postulated MMSE estimation of sparse signal vectors with independent and identically distributed (i.i.d.) non-zero components, we develop the corresponding decoupling principle for the SMV based MMSE estimation of sparse signal vectors with independent and non-identically distributed (i.n.i.d.) non-zero components, which plays a key role in the theoretical analysis of SMV based MMSE estimation of the effective channel coefficients in cell-free massive MIMO systems with massive connectivity. Subsequently, based on the obtained decoupling principle of MMSE estimation, likelihood ratio test and the optimal fusion rule, we perform user activity detection based on the received pilot signals at only one AP, or cooperation among the entire set of APs for centralized or distributed detection. Via theoretical analysis, we show that the error probabilities of both centralized and distributed detection tend to zero when the number of APs tends to infinity while the asymptotic ratio between the number of users and pilots is kept constant. We also investigate the asymptotic behavior of oracle estimation in cell-free massive MIMO systems with massive connectivity via random matrix theory.
This paper analyzes how the distortion created by hardware impairments in a multiple-antenna base station affects the uplink spectral efficiency (SE), with focus on Massive MIMO. This distortion is correlated across the antennas, but has been often approximated as uncorrelated to facilitate (tractable) SE analysis. To determine when this approximation is accurate, basic properties of distortion correlation are first uncovered. Then, we separately analyze the distortion correlation caused by third-order non-linearities and by quantization. Finally, we study the SE numerically and show that the distortion correlation can be safely neglected in Massive MIMO when there are sufficiently many users. Under i.i.d. Rayleigh fading and equal signal-to-noise ratios (SNRs), this occurs for more than five transmitting users. Other channel models and SNR variations have only minor impact on the accuracy. We also demonstrate the importance of taking the distortion characteristics into account in the receive combining.
The development of cloud infrastructures inspires the emergence of cloud-native computing. As the most promising architecture for deploying microservices, serverless computing has recently attracted more and more attention in both industry and academia. Due to its inherent scalability and flexibility, serverless computing becomes attractive and more pervasive for ever-growing Internet services. Despite the momentum in the cloud-native community, the existing challenges and compromises still wait for more advanced research and solutions to further explore the potentials of the serverless computing model. As a contribution to this knowledge, this article surveys and elaborates the research domains in the serverless context by decoupling the architecture into four stack layers: Virtualization, Encapsule, System Orchestration, and System Coordination. Inspired by the security model, we highlight the key implications and limitations of these works in each layer, and make suggestions for potential challenges to the field of future serverless computing.
This work focuses on mitigating two limitations in the joint learning of local feature detectors and descriptors. First, the ability to estimate the local shape (scale, orientation, etc.) of feature points is often neglected during dense feature extraction, while the shape-awareness is crucial to acquire stronger geometric invariance. Second, the localization accuracy of detected keypoints is not sufficient to reliably recover camera geometry, which has become the bottleneck in tasks such as 3D reconstruction. In this paper, we present ASLFeat, with three light-weight yet effective modifications to mitigate above issues. First, we resort to deformable convolutional networks to densely estimate and apply local transformation. Second, we take advantage of the inherent feature hierarchy to restore spatial resolution and low-level details for accurate keypoint localization. Finally, we use a peakiness measurement to relate feature responses and derive more indicative detection scores. The effect of each modification is thoroughly studied, and the evaluation is extensively conducted across a variety of practical scenarios. State-of-the-art results are reported that demonstrate the superiority of our methods.
Being accurate, efficient, and compact is essential to a facial landmark detector for practical use. To simultaneously consider the three concerns, this paper investigates a neat model with promising detection accuracy under wild environments e.g., unconstrained pose, expression, lighting, and occlusion conditions) and super real-time speed on a mobile device. More concretely, we customize an end-to-end single stage network associated with acceleration techniques. During the training phase, for each sample, rotation information is estimated for geometrically regularizing landmark localization, which is then NOT involved in the testing phase. A novel loss is designed to, besides considering the geometrical regularization, mitigate the issue of data imbalance by adjusting weights of samples to different states, such as large pose, extreme lighting, and occlusion, in the training set. Extensive experiments are conducted to demonstrate the efficacy of our design and reveal its superior performance over state-of-the-art alternatives on widely-adopted challenging benchmarks, i.e., 300W (including iBUG, LFPW, AFW, HELEN, and XM2VTS) and AFLW. Our model can be merely 2.1Mb of size and reach over 140 fps per face on a mobile phone (Qualcomm ARM 845 processor) with high precision, making it attractive for large-scale or real-time applications. We have made our practical system based on PFLD 0.25X model publicly available at \url{//sites.google.com/view/xjguo/fld} for encouraging comparisons and improvements from the community.
This research mainly emphasizes on traffic detection thus essentially involving object detection and classification. The particular work discussed here is motivated from unsatisfactory attempts of re-using well known pre-trained object detection networks for domain specific data. In this course, some trivial issues leading to prominent performance drop are identified and ways to resolve them are discussed. For example, some simple yet relevant tricks regarding data collection and sampling prove to be very beneficial. Also, introducing a blur net to deal with blurred real time data is another important factor promoting performance elevation. We further study the neural network design issues for beneficial object classification and involve shared, region-independent convolutional features. Adaptive learning rates to deal with saddle points are also investigated and an average covariance matrix based pre-conditioned approach is proposed. We also introduce the use of optical flow features to accommodate orientation information. Experimental results demonstrate that this results in a steady rise in the performance rate.
Online multi-object tracking (MOT) is extremely important for high-level spatial reasoning and path planning for autonomous and highly-automated vehicles. In this paper, we present a modular framework for tracking multiple objects (vehicles), capable of accepting object proposals from different sensor modalities (vision and range) and a variable number of sensors, to produce continuous object tracks. This work is inspired by traditional tracking-by-detection approaches in computer vision, with some key differences - First, we track objects across multiple cameras and across different sensor modalities. This is done by fusing object proposals across sensors accurately and efficiently. Second, the objects of interest (targets) are tracked directly in the real world. This is a departure from traditional techniques where objects are simply tracked in the image plane. Doing so allows the tracks to be readily used by an autonomous agent for navigation and related tasks. To verify the effectiveness of our approach, we test it on real world highway data collected from a heavily sensorized testbed capable of capturing full-surround information. We demonstrate that our framework is well-suited to track objects through entire maneuvers around the ego-vehicle, some of which take more than a few minutes to complete. We also leverage the modularity of our approach by comparing the effects of including/excluding different sensors, changing the total number of sensors, and the quality of object proposals on the final tracking result.