亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this study, we propose a time-dependent Susceptible-Exposed-Infected-Recovered (SEIR) model for the analysis of the SARS-CoV-2 epidemic outbreak in three different countries, the United States of America, Italy and Iceland using public data inherent the numbers of the epidemic wave. Since several types and grades of actions were adopted by the governments, including travel restrictions, social distancing, or limitation of movement, we want to investigate how these measures can affect the epidemic curve of the infectious population. The parameters of interest for the SEIR model were estimated employing a composite likelihood approach. Moreover, standard errors have been corrected for temporal dependence. The adoption of restrictive measures results in flatten epidemic curves, and the future evolution indicated a decrease in the number of cases.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · INTERACT · MoDELS · · Microsoft Surface ·
2022 年 1 月 10 日

When assessing the strength of sawn lumber for use in engineering applications, the sizes and locations of knots are an important consideration. Knots are the most common visual characteristics of lumber, that result from the growth of tree branches. Large individual knots, as well as clusters of distinct knots, are known to have strength-reducing effects. However, industry grading rules that govern the allowable arrangements of knots are informed by subjective judgment to some extent. Thus, the spatial interaction of knots and their relationship with strength properties has not been fully understood. This paper reports the results of a study that investigated and modelled the strength-reducing effects of knots on a sample of Douglas Fir lumber. Experimental data were obtained by taking scans of lumber surfaces and applying tensile strength testing. The modelling approach presented extends current methodology by incorporating all relevant knot information in a Bayesian framework.

Governments and public health authorities use seroprevalence studies to guide their responses to the COVID-19 pandemic. These seroprevalence surveys estimate the proportion of persons within a given population who have detectable antibodies to SARS-CoV-2. However, serologic assays are prone to misclassification error due to false positives and negatives, and non-probability sampling methods may induce selection bias. In this paper, we consider nonparametric and parametric prevalence estimators that address both challenges by leveraging validation data and assuming equal probabilities of sample inclusion within covariate-defined strata. Both estimators are shown to be consistent and asymptotically normal, and consistent variance estimators are derived. Simulation studies are presented comparing the finite sample performance of the estimators over a range of assay characteristics and sampling scenarios. The methods are used to estimate SARS-CoV-2 seroprevalence in asymptomatic individuals in Belgium and North Carolina.

In this paper we model the spreading of the SARS-CoV-2 in Mexico by introducing a new stochastic approximation constructed from first principles, structured on the basis of a Latent-Infectious- (Recovered or Deceased) (LI(RD)) compartmental approximation, where the number of new infected individuals caused by a single infectious individual per unit time (a day), is a random variable of a Poisson distribution and whose parameter is modulated through a weight-like time-dependent function. The weight function serves to introduce a time dependence to the average number of new infections and as we will show, this information can be extracted from empirical data, giving to the model self-consistency and provides a tool to study information about periodic patterns encoded in the epidemiological dynamics

Understanding decision-making in dynamic and complex settings is a challenge yet essential for preventing, mitigating, and responding to adverse events (e.g., disasters, financial crises). Simulation games have shown promise to advance our understanding of decision-making in such settings. However, an open question remains on how we extract useful information from these games. We contribute an approach to model human-simulation interaction by leveraging existing methods to characterize: (1) system states of dynamic simulation environments (with Principal Component Analysis), (2) behavioral responses from human interaction with simulation (with Hidden Markov Models), and (3) behavioral responses across system states (with Sequence Analysis). We demonstrate this approach with our game simulating drug shortages in a supply chain context. Results from our experimental study with 135 participants show different player types (hoarders, reactors, followers), how behavior changes in different system states, and how sharing information impacts behavior. We discuss how our findings challenge existing literature.

Diverse disciplines are interested in how the coordination of interacting agents' movements, emotions, and physiology over time impacts social behavior. Here, we describe a new multivariate procedure for automating the investigation of this kind of behaviorally-relevant "interactional synchrony", and introduce a novel interactional synchrony measure based on features of dynamic time warping (DTW) paths. We demonstrate that our DTW path-based measure of interactional synchrony between facial action units of two people interacting freely in a natural social interaction can be used to predict how much trust they will display in a subsequent Trust Game. We also show that our approach outperforms univariate head movement models, models that consider participants' facial action units independently, and models that use previously proposed synchrony or similarity measures. The insights of this work can be applied to any research question that aims to quantify the temporal coordination of multiple signals over time, but has immediate applications in psychology, medicine, and robotics.

Longitudinal and survival sub-models are two building blocks for joint modelling of longitudinal and time to event data. Extensive research indicates separate analysis of these two processes could result in biased outputs due to their associations. Conditional independence between measurements of biomarkers and event time process given latent classes or random effects is a common approach for characterising the association between the two sub-models while taking the heterogeneity among the population into account. However, this assumption is tricky to validate because of the unobservable latent variables. Thus a Gaussian copula joint model with random effects is proposed to accommodate the scenarios where the conditional independence assumption is questionable. In our proposed model, the conventional joint model assuming conditional independence is a special case when the association parameter in the Gaussian copula shrinks to zero. Simulation studies and real data application are carried out to evaluate the performance of our proposed model. In addition, personalised dynamic predictions of survival probabilities are obtained based on the proposed model and comparisons are made to the predictions obtained under the conventional joint model.

Risk evaluation to identify individuals who are at greater risk of cancer as a result of heritable pathogenic variants is a valuable component of individualized clinical management. Using principles of Mendelian genetics, Bayesian probability theory, and variant-specific knowledge, Mendelian models derive the probability of carrying a pathogenic variant and developing cancer in the future, based on family history. Existing Mendelian models are widely employed, but are generally limited to specific genes and syndromes. However, the upsurge of multi-gene panel germline testing has spurred the discovery of many new gene-cancer associations that are not presently accounted for in these models. We have developed PanelPRO, a flexible, efficient Mendelian risk prediction framework that can incorporate an arbitrary number of genes and cancers, overcoming the computational challenges that arise because of the increased model complexity. We implement an eleven-gene, eleven-cancer model, the largest Mendelian model created thus far, based on this framework. Using simulations and a clinical cohort with germline panel testing data, we evaluate model performance, validate the reverse-compatibility of our approach with existing Mendelian models, and illustrate its usage. Our implementation is freely available for research use in the PanelPRO R package.

Behavioral science researchers have shown strong interest in disaggregating within-person relations from between-person differences (stable traits) using longitudinal data. In this paper, we propose a method of within-person variability score-based causal inference for estimating joint effects of time-varying continuous treatments by effectively controlling for stable traits. After explaining the assumed data-generating process and providing formal definitions of stable trait factors, within-person variability scores, and joint effects of time-varying treatments at the within-person level, we introduce the proposed method, which consists of a two-step analysis. Within-person variability scores for each person, which are disaggregated from stable traits of that person, are first calculated using weights based on a best linear correlation preserving predictor through structural equation modeling (SEM). Causal parameters are then estimated via a potential outcome approach, either marginal structural models (MSMs) or structural nested mean models (SNMMs), using calculated within-person variability scores. Unlike the approach that relies entirely on SEM, the present method does not assume linearity for observed time-varying confounders at the within-person level. We emphasize the use of SNMMs with G-estimation because of its property of being doubly robust to model misspecifications in how observed time-varying confounders are functionally related with treatments/predictors and outcomes at the within-person level. Through simulation, we show that the proposed method can recover causal parameters well and that causal estimates might be severely biased if one does not properly account for stable traits. An empirical application using data regarding sleep habits and mental health status from the Tokyo Teen Cohort study is also provided.

Although measuring held-out accuracy has been the primary approach to evaluate generalization, it often overestimates the performance of NLP models, while alternative approaches for evaluating models either focus on individual tasks or on specific behaviors. Inspired by principles of behavioral testing in software engineering, we introduce CheckList, a task-agnostic methodology for testing NLP models. CheckList includes a matrix of general linguistic capabilities and test types that facilitate comprehensive test ideation, as well as a software tool to generate a large and diverse number of test cases quickly. We illustrate the utility of CheckList with tests for three tasks, identifying critical failures in both commercial and state-of-art models. In a user study, a team responsible for a commercial sentiment analysis model found new and actionable bugs in an extensively tested model. In another user study, NLP practitioners with CheckList created twice as many tests, and found almost three times as many bugs as users without it.

Matter evolved under influence of gravity from minuscule density fluctuations. Non-perturbative structure formed hierarchically over all scales, and developed non-Gaussian features in the Universe, known as the Cosmic Web. To fully understand the structure formation of the Universe is one of the holy grails of modern astrophysics. Astrophysicists survey large volumes of the Universe and employ a large ensemble of computer simulations to compare with the observed data in order to extract the full information of our own Universe. However, to evolve trillions of galaxies over billions of years even with the simplest physics is a daunting task. We build a deep neural network, the Deep Density Displacement Model (hereafter D$^3$M), to predict the non-linear structure formation of the Universe from simple linear perturbation theory. Our extensive analysis, demonstrates that D$^3$M outperforms the second order perturbation theory (hereafter 2LPT), the commonly used fast approximate simulation method, in point-wise comparison, 2-point correlation, and 3-point correlation. We also show that D$^3$M is able to accurately extrapolate far beyond its training data, and predict structure formation for significantly different cosmological parameters. Our study proves, for the first time, that deep learning is a practical and accurate alternative to approximate simulations of the gravitational structure formation of the Universe.

北京阿比特科技有限公司