亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In recent years, the evolution of Telecom towards achieving intelligent, autonomous, and open networks has led to an increasingly complex Telecom Software system, supporting various heterogeneous deployment scenarios, with multi-standard and multi-vendor support. As a result, it becomes a challenge for large-scale Telecom software companies to develop and test software for all deployment scenarios. To address these challenges, we propose a framework for Automated Test Generation for large-scale Telecom Software systems. We begin by generating Test Case Input data for test scenarios observed using a time-series Generative model trained on historical Telecom Network data during field trials. Additionally, the time-series Generative model helps in preserving the privacy of Telecom data. The generated time-series software performance data are then utilized with test descriptions written in natural language to generate Test Script using the Generative Large Language Model. Our comprehensive experiments on public datasets and Telecom datasets obtained from operational Telecom Networks demonstrate that the framework can effectively generate comprehensive test case data input and useful test code.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · Networking · 分離的 · ReQuEST · Integration ·
2024 年 5 月 24 日

The rapid growth of non-terrestrial communication necessitates its integration with existing terrestrial networks, as highlighted in 3GPP Releases 16 and 17. This paper analyses the concept of functional splits in 3D-Networks. To manage this complex structure effectively, the adoption of a Radio Access Network (RAN) architecture with Functional Split (FS) offers advantages in flexibility, scalability, and cost-efficiency. RAN achieves this by disaggregating functionalities into three separate units. Analogous to the terrestrial network approach, 3GPP is extending this concept to non-terrestrial platforms as well. This work presents a general analysis of the requested Fronthaul (FH) data rate on feeder link between a non-terrestrial platform and the ground-station. Each split option is a trade-of between FH data rate and the respected complexity. Since flying nodes face more limitations regarding power consumption and complexity on board in comparison to terrestrial ones, we are investigating the split options between lower and higher physical layer.

Advances in Large Language Models (LLMs) have led to significant interest in their potential to support human experts across a range of domains, including public health. In this work we present automated evaluations of LLMs for public health tasks involving the classification and extraction of free text. We combine six externally annotated datasets with seven new internally annotated datasets to evaluate LLMs for processing text related to: health burden, epidemiological risk factors, and public health interventions. We initially evaluate five open-weight LLMs (7-70 billion parameters) across all tasks using zero-shot in-context learning. We find that Llama-3-70B-Instruct is the highest performing model, achieving the best results on 15/17 tasks (using micro-F1 scores). We see significant variation across tasks with all open-weight LLMs scoring below 60% micro-F1 on some challenging tasks, such as Contact Classification, while all LLMs achieve greater than 80% micro-F1 on others, such as GI Illness Classification. For a subset of 12 tasks, we also evaluate GPT-4 and find comparable results to Llama-3-70B-Instruct, which scores equally or outperforms GPT-4 on 6 of the 12 tasks. Overall, based on these initial results we find promising signs that LLMs may be useful tools for public health experts to extract information from a wide variety of free text sources, and support public health surveillance, research, and interventions.

Spiking neural networks (SNNs) represent a promising approach to developing artificial neural networks that are both energy-efficient and biologically plausible. However, applying SNNs to sequential tasks, such as text classification and time-series forecasting, has been hindered by the challenge of creating an effective and hardware-friendly spike-form positional encoding (PE) strategy. Drawing inspiration from the central pattern generators (CPGs) in the human brain, which produce rhythmic patterned outputs without requiring rhythmic inputs, we propose a novel PE technique for SNNs, termed CPG-PE. We demonstrate that the commonly used sinusoidal PE is mathematically a specific solution to the membrane potential dynamics of a particular CPG. Moreover, extensive experiments across various domains, including time-series forecasting, natural language processing, and image classification, show that SNNs with CPG-PE outperform their conventional counterparts. Additionally, we perform analysis experiments to elucidate the mechanism through which SNNs encode positional information and to explore the function of CPGs in the human brain. This investigation may offer valuable insights into the fundamental principles of neural computation.

The tremendous recent advances in generative artificial intelligence techniques have led to significant successes and promise in a wide range of different applications ranging from conversational agents and textual content generation to voice and visual synthesis. Amid the rise in generative AI and its increasing widespread adoption, there has been significant growing concern over the use of generative AI for malicious purposes. In the realm of visual content synthesis using generative AI, key areas of significant concern has been image forgery (e.g., generation of images containing or derived from copyright content), and data poisoning (i.e., generation of adversarially contaminated images). Motivated to address these key concerns to encourage responsible generative AI, we introduce the DeepfakeArt Challenge, a large-scale challenge benchmark dataset designed specifically to aid in the building of machine learning algorithms for generative AI art forgery and data poisoning detection. Comprising of over 32,000 records across a variety of generative forgery and data poisoning techniques, each entry consists of a pair of images that are either forgeries / adversarially contaminated or not. Each of the generated images in the DeepfakeArt Challenge benchmark dataset \footnote{The link to the dataset: //anon\_for\_review.com} has been quality checked in a comprehensive manner.

The problem of improving the handover performance in Long Term Evolution-Advanced (LTE-A) networks has not been fully solved yet. Traditionally, the selection of the target Evolved Node B (TeNB) in the handover procedure is based on the signal strength measurements, which may not produce a reliable handover. A reliable handover method may reduce the instances of unstable or frequent handovers that otherwise waste network resources. The signal strength measurement process is inherently time consuming as the user equipment (UE) has to measure multiple neighboring eNB (NeNB) frequencies in each measurement period. An efficient handover method is required to improve the overall performance of such systems. In this paper we propose a reliable and fast TeNB selection scheme for LTE-A handover. The proposed scheme outperforms the existing LTE-A handover methods. The improved performance is achieved by selecting the TeNB based on some three independent parameters, namely orientation matching (OM), current load (CL), and the received signal strengths. An UE essentially measures only the NeNBs shortlisted based on OM and CL; thus measurement time is reduced considerably leading to a reduction of overall handover time. The performance of the proposed scheme is validated by simulation.

The development of next-generation networks is revolutionizing network operators' management and orchestration practices worldwide. The critical services supported by these networks require increasingly stringent performance requirements, especially when considering the aspect of network reliability. This increase in reliability, coupled with the mass generation and consumption of information stemming from the increasing complexity of the network and the integration of artificial intelligence agents, affects transport networks, which will be required to allow the feasibility of such services to materialize. To this end, traditional recovery schemes are inadequate to ensure the resilience requirements of next-generation critical services given the increasingly dynamic nature of the network. The work presented in this paper proposes a probabilistic and fault-tolerant robust traffic grooming model for OTN-over-DWDM networks. The model's parameterization gives network operators the ability to control the level of protection and reliability required to meet their quality of service and service level agreement guarantees. The results demonstrate that the robust solution can ensure fault tolerance even in the face of demand uncertainty without service disruptions and the need for reactive network maintenance.

Advances in artificial intelligence often stem from the development of new environments that abstract real-world situations into a form where research can be done conveniently. This paper contributes such an environment based on ideas inspired by elementary Microeconomics. Agents learn to produce resources in a spatially complex world, trade them with one another, and consume those that they prefer. We show that the emergent production, consumption, and pricing behaviors respond to environmental conditions in the directions predicted by supply and demand shifts in Microeconomics. We also demonstrate settings where the agents' emergent prices for goods vary over space, reflecting the local abundance of goods. After the price disparities emerge, some agents then discover a niche of transporting goods between regions with different prevailing prices -- a profitable strategy because they can buy goods where they are cheap and sell them where they are expensive. Finally, in a series of ablation experiments, we investigate how choices in the environmental rewards, bartering actions, agent architecture, and ability to consume tradable goods can either aid or inhibit the emergence of this economic behavior. This work is part of the environment development branch of a research program that aims to build human-like artificial general intelligence through multi-agent interactions in simulated societies. By exploring which environment features are needed for the basic phenomena of elementary microeconomics to emerge automatically from learning, we arrive at an environment that differs from those studied in prior multi-agent reinforcement learning work along several dimensions. For example, the model incorporates heterogeneous tastes and physical abilities, and agents negotiate with one another as a grounded form of communication.

Deep neural networks (DNNs) are successful in many computer vision tasks. However, the most accurate DNNs require millions of parameters and operations, making them energy, computation and memory intensive. This impedes the deployment of large DNNs in low-power devices with limited compute resources. Recent research improves DNN models by reducing the memory requirement, energy consumption, and number of operations without significantly decreasing the accuracy. This paper surveys the progress of low-power deep learning and computer vision, specifically in regards to inference, and discusses the methods for compacting and accelerating DNN models. The techniques can be divided into four major categories: (1) parameter quantization and pruning, (2) compressed convolutional filters and matrix factorization, (3) network architecture search, and (4) knowledge distillation. We analyze the accuracy, advantages, disadvantages, and potential solutions to the problems with the techniques in each category. We also discuss new evaluation metrics as a guideline for future research.

Recent advancements in deep neural networks for graph-structured data have led to state-of-the-art performance on recommender system benchmarks. However, making these methods practical and scalable to web-scale recommendation tasks with billions of items and hundreds of millions of users remains a challenge. Here we describe a large-scale deep recommendation engine that we developed and deployed at Pinterest. We develop a data-efficient Graph Convolutional Network (GCN) algorithm PinSage, which combines efficient random walks and graph convolutions to generate embeddings of nodes (i.e., items) that incorporate both graph structure as well as node feature information. Compared to prior GCN approaches, we develop a novel method based on highly efficient random walks to structure the convolutions and design a novel training strategy that relies on harder-and-harder training examples to improve robustness and convergence of the model. We also develop an efficient MapReduce model inference algorithm to generate embeddings using a trained model. We deploy PinSage at Pinterest and train it on 7.5 billion examples on a graph with 3 billion nodes representing pins and boards, and 18 billion edges. According to offline metrics, user studies and A/B tests, PinSage generates higher-quality recommendations than comparable deep learning and graph-based alternatives. To our knowledge, this is the largest application of deep graph embeddings to date and paves the way for a new generation of web-scale recommender systems based on graph convolutional architectures.

Convolutional networks (ConvNets) have achieved great successes in various challenging vision tasks. However, the performance of ConvNets would degrade when encountering the domain shift. The domain adaptation is more significant while challenging in the field of biomedical image analysis, where cross-modality data have largely different distributions. Given that annotating the medical data is especially expensive, the supervised transfer learning approaches are not quite optimal. In this paper, we propose an unsupervised domain adaptation framework with adversarial learning for cross-modality biomedical image segmentations. Specifically, our model is based on a dilated fully convolutional network for pixel-wise prediction. Moreover, we build a plug-and-play domain adaptation module (DAM) to map the target input to features which are aligned with source domain feature space. A domain critic module (DCM) is set up for discriminating the feature space of both domains. We optimize the DAM and DCM via an adversarial loss without using any target domain label. Our proposed method is validated by adapting a ConvNet trained with MRI images to unpaired CT data for cardiac structures segmentations, and achieved very promising results.

北京阿比特科技有限公司