For approximate nearest neighbor search, graph-based algorithms have shown to offer the best trade-off between accuracy and search time. We propose the Dynamic Exploration Graph (DEG) which significantly outperforms existing algorithms in terms of search and exploration efficiency by combining two new ideas: First, a single undirected even regular graph is incrementally built by partially replacing existing edges to integrate new vertices and to update old neighborhoods at the same time. Secondly, an edge optimization algorithm is used to continuously improve the quality of the graph. Combining this ongoing refinement with the graph construction process leads to a well-organized graph structure at all times, resulting in: (1) increased search efficiency, (2) predictable index size, (3) guaranteed connectivity and therefore reachability of all vertices, and (4) a dynamic graph structure. In addition we investigate how well existing graph-based search systems can handle indexed queries where the seed vertex of a search is the query itself. Such exploration tasks, despite their good starting point, are not necessarily easy. High efficiency in approximate nearest neighbor search (ANNS) does not automatically imply good performance in exploratory search. Extensive experiments show that our new Dynamic Exploration Graph outperforms existing algorithms significantly for indexed and unindexed queries.
Self-supervised learning (SSL) has shown impressive results in downstream classification tasks. However, there is limited work in understanding their failure modes and interpreting their learned representations. In this paper, we study the representation space of state-of-the-art self-supervised models including SimCLR, SwaV, MoCo, BYOL, DINO, SimSiam, VICReg and Barlow Twins. Without the use of class label information, we discover discriminative features that correspond to unique physical attributes in images, present mostly in correctly-classified representations. Using these features, we can compress the representation space by up to 40% without significantly affecting linear classification performance. We then propose Self-Supervised Representation Quality Score (or Q-Score), an unsupervised score that can reliably predict if a given sample is likely to be mis-classified during linear evaluation, achieving AUPRC of 91.45 on ImageNet-100 and 78.78 on ImageNet-1K. Q-Score can also be used as a regularization term on pre-trained encoders to remedy low-quality representations. Fine-tuning with Q-Score regularization can boost the linear probing accuracy of SSL models by up to 5.8% on ImageNet-100 and 3.7% on ImageNet-1K compared to their baselines. Finally, using gradient heatmaps and Salient ImageNet masks, we define a metric to quantify the interpretability of each representation. We show that discriminative features are strongly correlated to core attributes and, enhancing these features through Q-score regularization makes SSL representations more interpretable.
With the rapid development of distributed energy resources, increasing number of residential and commercial users have been switched from pure electricity consumers to prosumers that can both consume and produce energy. To properly manage these emerging prosumers, a peer-to-peer electricity market has been explored and extensively studied. In such an electricity market, each prosumer trades energy directly with other prosumers, posing a serious challenge to the scalability of the market. Therefore, a bilateral energy trading mechanism with good scalability is proposed for electricity markets with numerous prosumers in this paper. First, the multi-bilateral economic dispatch problem that maximizes the social welfare is formulated, taking into account product differentiation and network constraints. Then, an energy trading mechanism is devised to improve the scalability from two aspects: (i) an accelerated distributed clearing algorithm with less exchanged information and faster convergence rate. (ii) a novel selection strategy to reduce the amount of computation and communication per prosumer. Finally, the convergence proof of the proposed accelerated algorithm is given, and the proposed selection strategy is illustrated through a Monte Carlo simulation experiment.
Despite recent success, state-of-the-art learning-based models remain highly vulnerable to input changes such as adversarial examples. In order to obtain certifiable robustness against such perturbations, recent work considers Lipschitz-based regularizers or constraints while at the same time increasing prediction margin. Unfortunately, this comes at the cost of significantly decreased accuracy. In this paper, we propose a Calibrated Lipschitz-Margin Loss (CLL) that addresses this issue and improves certified robustness by tackling two problems: Firstly, commonly used margin losses do not adjust the penalties to the shrinking output distribution; caused by minimizing the Lipschitz constant $K$. Secondly, and most importantly, we observe that minimization of $K$ can lead to overly smooth decision functions. This limits the model's complexity and thus reduces accuracy. Our CLL addresses these issues by explicitly calibrating the loss w.r.t. margin and Lipschitz constant, thereby establishing full control over slack and improving robustness certificates even with larger Lipschitz constants. On CIFAR-10, CIFAR-100 and Tiny-ImageNet, our models consistently outperform losses that leave the constant unattended. On CIFAR-100 and Tiny-ImageNet, CLL improves upon state-of-the-art deterministic $L_2$ robust accuracies. In contrast to current trends, we unlock potential of much smaller models without $K=1$ constraints.
This paper investigates the potential of near-field localization using widely-spaced multi-subarrays (WSMSs) and analyzing the corresponding angle and range Cram\'er-Rao bounds (CRBs). By employing the Riemann sum, closed-form CRB expressions are derived for the spherical wavefront-based WSMS (SW-WSMS). We find that the CRBs can be characterized by the angular span formed by the line connecting the array's two ends to the target, and the different WSMSs with same angular spans but different number of subarrays have identical normalized CRBs. We provide a theoretical proof that, in certain scenarios, the CRB of WSMSs is smaller than that of uniform arrays. We further yield the closed-form CRBs for the hybrid spherical and planar wavefront-based WSMS (HSPW-WSMS), and its components can be seen as decompositions of the parameters from the CRBs for the SW-WSMS. Simulations are conducted to validate the accuracy of the derived closed-form CRBs and provide further insights into various system characteristics. Basically, this paper underscores the high resolution of utilizing WSMS for localization, reinforces the validity of adopting the HSPW assumption, and, considering its applications in communications, indicates a promising outlook for integrated sensing and communications based on HSPW-WSMSs.
Cybersecurity attacks are becoming increasingly sophisticated and pose a growing threat to individuals, and private and public sectors. Distributed Denial of Service attacks are one of the most harmful of these threats in today's internet, disrupting the availability of essential services. This project presents a novel deep learning-based approach for detecting DDoS attacks in network traffic using the industry-recognized DDoS evaluation dataset from the University of New Brunswick, which contains packet captures from real-time DDoS attacks, creating a broader and more applicable model for the real world. The algorithm employed in this study exploits the properties of Convolutional Neural Networks (CNN) and common deep learning algorithms to build a novel mitigation technique that classifies benign and malicious traffic. The proposed model preprocesses the data by extracting packet flows and normalizing them to a fixed length which is fed into a custom architecture containing layers regulating node dropout, normalization, and a sigmoid activation function to out a binary classification. This allows for the model to process the flows effectively and look for the nodes that contribute to DDoS attacks while dropping the "noise" or the distractors. The results of this study demonstrate the effectiveness of the proposed algorithm in detecting DDOS attacks, achieving an accuracy of .9883 on 2000 unseen flows in network traffic, while being scalable for any network environment.
Product cannibalisation in the marketplace refers to the decrease in the sales of one product due to competition from another product. We examine this phenomenon in a wholesale data set provided by an international company. We use a multivariate Hawkes process where each product is represented by a dimension, with cross-inhibition effects that model product cannibalisation. To implement the Hawkes process with inhibition we resolve challenges regarding the integration of the intensity function and introduce a new, stronger conditions for stability as existing conditions are unnecessarily strict under inhibition. We conduct our analysis in a Bayesian framework, for which we design a dimension-independent prior on the cross-inhibition based on a reparametrisation.
Knowledge graphs capture interlinked information between entities and they represent an attractive source of structured information that can be harnessed for recommender systems. However, existing recommender engines use knowledge graphs by manually designing features, do not allow for end-to-end training, or provide poor scalability. Here we propose Knowledge Graph Convolutional Networks (KGCN), an end-to-end trainable framework that harnesses item relationships captured by the knowledge graph to provide better recommendations. Conceptually, KGCN computes user-specific item embeddings by first applying a trainable function that identifies important knowledge graph relations for a given user and then transforming the knowledge graph into a user-specific weighted graph. Then, KGCN applies a graph convolutional neural network that computes an embedding of an item node by propagating and aggregating knowledge graph neighborhood information. Moreover, to provide better inductive bias KGCN uses label smoothness (LS), which provides regularization over edge weights and we prove that it is equivalent to label propagation scheme on a graph. Finally, We unify KGCN and LS regularization, and present a scalable minibatch implementation for KGCN-LS model. Experiments show that KGCN-LS outperforms strong baselines in four datasets. KGCN-LS also achieves great performance in sparse scenarios and is highly scalable with respect to the knowledge graph size.
Multimodal sentiment analysis is a very actively growing field of research. A promising area of opportunity in this field is to improve the multimodal fusion mechanism. We present a novel feature fusion strategy that proceeds in a hierarchical fashion, first fusing the modalities two in two and only then fusing all three modalities. On multimodal sentiment analysis of individual utterances, our strategy outperforms conventional concatenation of features by 1%, which amounts to 5% reduction in error rate. On utterance-level multimodal sentiment analysis of multi-utterance video clips, for which current state-of-the-art techniques incorporate contextual information from other utterances of the same clip, our hierarchical fusion gives up to 2.4% (almost 10% error rate reduction) over currently used concatenation. The implementation of our method is publicly available in the form of open-source code.
We examine the problem of question answering over knowledge graphs, focusing on simple questions that can be answered by the lookup of a single fact. Adopting a straightforward decomposition of the problem into entity detection, entity linking, relation prediction, and evidence combination, we explore simple yet strong baselines. On the popular SimpleQuestions dataset, we find that basic LSTMs and GRUs plus a few heuristics yield accuracies that approach the state of the art, and techniques that do not use neural networks also perform reasonably well. These results show that gains from sophisticated deep learning techniques proposed in the literature are quite modest and that some previous models exhibit unnecessary complexity.
Recently, deep learning has achieved very promising results in visual object tracking. Deep neural networks in existing tracking methods require a lot of training data to learn a large number of parameters. However, training data is not sufficient for visual object tracking as annotations of a target object are only available in the first frame of a test sequence. In this paper, we propose to learn hierarchical features for visual object tracking by using tree structure based Recursive Neural Networks (RNN), which have fewer parameters than other deep neural networks, e.g. Convolutional Neural Networks (CNN). First, we learn RNN parameters to discriminate between the target object and background in the first frame of a test sequence. Tree structure over local patches of an exemplar region is randomly generated by using a bottom-up greedy search strategy. Given the learned RNN parameters, we create two dictionaries regarding target regions and corresponding local patches based on the learned hierarchical features from both top and leaf nodes of multiple random trees. In each of the subsequent frames, we conduct sparse dictionary coding on all candidates to select the best candidate as the new target location. In addition, we online update two dictionaries to handle appearance changes of target objects. Experimental results demonstrate that our feature learning algorithm can significantly improve tracking performance on benchmark datasets.