亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We present and analyze a simple numerical method that diagonalizes a complex normal matrix A by diagonalizing the Hermitian matrix obtained from a random linear combination of the Hermitian and skew-Hermitian parts of A.

相關內容

Predicting quantum operator matrices such as Hamiltonian, overlap, and density matrices in the density functional theory (DFT) framework is crucial for understanding material properties. Current methods often focus on individual operators and struggle with efficiency and scalability for large systems. Here we introduce a novel deep learning model, SLEM (Strictly Localized Equivariant Message-passing) for predicting multiple quantum operators, that achieves state-of-the-art accuracy while dramatically improving computational efficiency. SLEM's key innovation is its strict locality-based design, constructing local, equivariant representations for quantum tensors while preserving physical symmetries. This enables complex many-body dependence without expanding the effective receptive field, leading to superior data efficiency and transferability. Using an innovative SO(2) convolution technique, SLEM reduces the computational complexity of high-order tensor products and is therefore capable of handling systems requiring the $f$ and $g$ orbitals in their basis sets. We demonstrate SLEM's capabilities across diverse 2D and 3D materials, achieving high accuracy even with limited training data. SLEM's design facilitates efficient parallelization, potentially extending DFT simulations to systems with device-level sizes, opening new possibilities for large-scale quantum simulations and high-throughput materials discovery.

We provide a unified continuum formulation of linearized mechanics, Stokes' flow and poromechanics in terms of a conservation structure. Starting from this formulation, we construct corresponding simple and robust finite volume discretizations for these physical systems, based only on co-located, cell-centered variables. These discretizations have a minimal discretization stencil, using only the two neighboring cells to a face to calculate numerical stresses and fluxes. We show well-posedness of a weak statement of the continuous formulation in appropriate Hilbert spaces, and identify the appropriate weighted norms for the problem. For the discrete approximations, we prove stability and convergence, both of which are robust in terms of the material parameters. Numerical experiments in 3D support the theoretical results, and provide additional insight into the practical performance of the discretization.

We present a new algorithm for solving linear-quadratic regulator (LQR) problems with linear equality constraints. This is the first such exact algorithm that is guaranteed to have a runtime that is linear in the number of stages, as well as linear in the number of both state-only constraints as well as mixed state-and-control constraints, without imposing any restrictions on the problem instances. We also show how to easily parallelize this algorithm to run in parallel runtime logarithmic in the number of stages of the problem.

This paper deals with the numerical solution of conservation laws in the two dimensional case using a novel compact implicit time discretization that enable applications of fast algebraic solvers. We present details for the second order accurate parametric scheme based on the finite volume method including simple variants of ENO (Essentially Non-Oscillatory) and WENO (Weighted Essentially Non-Oscillatory) approximations. We present numerical experiments for representative linear and nonlinear problems.

We investigate the set of invariant idempotent probabilities for countable idempotent iterated function systems (IFS) defined in compact metric spaces. We demonstrate that, with constant weights, there exists a unique invariant idempotent probability. Utilizing Secelean's approach to countable IFSs, we introduce partially finite idempotent IFSs and prove that the sequence of invariant idempotent measures for these systems converges to the invariant measure of the original countable IFS. We then apply these results to approximate such measures with discrete systems, producing, in the one-dimensional case, data series whose Higuchi fractal dimension can be calculated. Finally, we provide numerical approximations for two-dimensional cases and discuss the application of generalized Higuchi dimensions in these scenarios.

We propose a way to maintain strong consistency and facilitate error analysis in the context of dissipation-based WENO stabilization for continuous and discontinuous Galerkin discretizations of conservation laws. Following Kuzmin and Vedral (J. Comput. Phys. 487:112153, 2023) and Vedral (arXiv preprint arXiv:2309.12019), we use WENO shock detectors to determine appropriate amounts of low-order artificial viscosity. In contrast to existing WENO methods, our approach blends candidate polynomials using residual-based nonlinear weights. The shock-capturing terms of our stabilized Galerkin methods vanish if residuals do. This enables us to achieve improved accuracy compared to weakly consistent alternatives. As we show in the context of steady convection-diffusion-reaction (CDR) equations, nonlinear local projection stabilization terms can be included in a way that preserves the coercivity of local bilinear forms. For the corresponding Galerkin-WENO discretization of a CDR problem, we rigorously derive a priori error estimates. Additionally, we demonstrate the stability and accuracy of the proposed method through one- and two-dimensional numerical experiments for hyperbolic conservation laws and systems thereof. The numerical results for representative test problems are superior to those obtained with traditional WENO schemes, particularly in scenarios involving shocks and steep gradients.

We give an improved algorithm for learning a quantum Hamiltonian given copies of its Gibbs state, that can succeed at any temperature. Specifically, we improve over the work of Bakshi, Liu, Moitra, and Tang [BLMT24], by reducing the sample complexity and runtime dependence to singly exponential in the inverse-temperature parameter, as opposed to doubly exponential. Our main technical contribution is a new flat polynomial approximation to the exponential function, with significantly lower degree than the flat polynomial approximation used in [BLMT24].

We propose an extremely versatile approach to address a large family of matrix nearness problems, possibly with additional linear constraints. Our method is based on splitting a matrix nearness problem into two nested optimization problems, of which the inner one can be solved either exactly or cheaply, while the outer one can be recast as an unconstrained optimization task over a smooth real Riemannian manifold. We observe that this paradigm applies to many matrix nearness problems of practical interest appearing in the literature, thus revealing that they are equivalent in this sense to a Riemannian optimization problem. We also show that the objective function to be minimized on the Riemannian manifold can be discontinuous, thus requiring regularization techniques, and we give conditions for this to happen. Finally, we demonstrate the practical applicability of our method by implementing it for a number of matrix nearness problems that are relevant for applications and are currently considered very demanding in practice. Extensive numerical experiments demonstrate that our method often greatly outperforms its predecessors, including algorithms specifically designed for those particular problems.

This work explores multi-modal inference in a high-dimensional simplified model, analytically quantifying the performance gain of multi-modal inference over that of analyzing modalities in isolation. We present the Bayes-optimal performance and weak recovery thresholds in a model where the objective is to recover the latent structures from two noisy data matrices with correlated spikes. The paper derives the approximate message passing (AMP) algorithm for this model and characterizes its performance in the high-dimensional limit via the associated state evolution. The analysis holds for a broad range of priors and noise channels, which can differ across modalities. The linearization of AMP is compared numerically to the widely used partial least squares (PLS) and canonical correlation analysis (CCA) methods, which are both observed to suffer from a sub-optimal recovery threshold.

A new, more efficient, numerical method for the SDOF problem is presented. Its construction is based on the weak form of the equation of motion, as obtained in part I of the paper, using piece-wise polynomial functions as interpolation functions. The approximation rate can be arbitrarily high, proportional to the degree of the interpolation functions, tempered only by numerical instability. Moreover, the mechanical energy of the system is conserved. Consequently, all significant drawbacks of existing algorithms, such as the limitations imposed by the Dahlqvist Barrier theorem and the need for introduction of numerical damping, have been overcome.

北京阿比特科技有限公司