Compliance with the European Union's Platform-to-Business (P2B) Regulation is challenging for online platforms, and assessing their compliance can be difficult for public authorities. This is partly due to the lack of automated tools for assessing the information (e.g., software documentation) platforms provide concerning ranking transparency. Our study tackles this issue in two ways. First, we empirically evaluate the compliance of six major platforms (Amazon, Bing, Booking, Google, Tripadvisor, and Yahoo), revealing substantial differences in their documentation. Second, we introduce and test automated compliance assessment tools based on ChatGPT and information retrieval technology. These tools are evaluated against human judgments, showing promising results as reliable proxies for compliance assessments. Our findings could help enhance regulatory compliance and align with the United Nations Sustainable Development Goal 10.3, which seeks to reduce inequality, including business disparities, on these platforms.
Large language models (LLMs) need to serve everyone, including a global majority of non-English speakers. However, most LLMs today, and open LLMs in particular, are often intended for use in just English (e.g. Llama2, Mistral) or a small handful of high-resource languages (e.g. Mixtral, Qwen). Recent research shows that, despite limits in their intended use, people prompt LLMs in many different languages. Therefore, in this paper, we investigate the basic multilingual capabilities of state-of-the-art open LLMs beyond their intended use. For this purpose, we introduce MultiQ, a new silver standard benchmark for basic open-ended question answering with 27.4k test questions across a typologically diverse set of 137 languages. With MultiQ, we evaluate language fidelity, i.e.\ whether models respond in the prompted language, and question answering accuracy. All LLMs we test respond faithfully and/or accurately for at least some languages beyond their intended use. Most models are more accurate when they respond faithfully. However, differences across models are large, and there is a long tail of languages where models are neither accurate nor faithful. We explore differences in tokenization as a potential explanation for our findings, identifying possible correlations that warrant further investigation.
In the continuously advancing AI landscape, crafting context-rich and meaningful responses via Large Language Models (LLMs) is essential. Researchers are becoming more aware of the challenges that LLMs with fewer parameters encounter when trying to provide suitable answers to open-ended questions. To address these hurdles, the integration of cutting-edge strategies, augmentation of rich external domain knowledge to LLMs, offers significant improvements. This paper introduces a novel framework that combines graph-driven context retrieval in conjunction to knowledge graphs based enhancement, honing the proficiency of LLMs, especially in domain specific community question answering platforms like AskUbuntu, Unix, and ServerFault. We conduct experiments on various LLMs with different parameter sizes to evaluate their ability to ground knowledge and determine factual accuracy in answers to open-ended questions. Our methodology GraphContextGen consistently outperforms dominant text-based retrieval systems, demonstrating its robustness and adaptability to a larger number of use cases. This advancement highlights the importance of pairing context rich data retrieval with LLMs, offering a renewed approach to knowledge sourcing and generation in AI systems. We also show that, due to rich contextual data retrieval, the crucial entities, along with the generated answer, remain factually coherent with the gold answer.
The extropy measure, introduced by Lad, Sanfilippo, and Agro in their (2015) paper in Statistical Science, has garnered significant interest over the past years. In this study, we present a novel representation for the weighted extropy within the context of extreme ranked set sampling. Additionally, we offer related findings such as stochastic orders, characterizations, and precise bounds. Our results shed light onthe comparison between the weighted extropy of extreme ranked set sampling and its counterpart in simple random sampling.
The use of emerging technologies like Virtual Reality (VR) in therapeutic settings has increased in the past few years. By incorporating VR, a mental health condition like depression can be assessed effectively, while also providing personalized motivation and meaningful engagement for treatment purposes. The integration of external sensors further enhances the engagement of the subjects with the VR scenes. This paper presents a comprehensive review of existing literature on the detection and treatment of depression using VR. It explores various types of VR scenes, external hardware, innovative metrics, and targeted user studies conducted by researchers and professionals in the field. The paper also discusses potential requirements for designing VR scenes specifically tailored for depression assessment and treatment, with the aim of guiding future practitioners in this area.
Controlled execution of dynamic motions in quadrupedal robots, especially those with articulated soft bodies, presents a unique set of challenges that traditional methods struggle to address efficiently. In this study, we tackle these issues by relying on a simple yet effective two-stage learning framework to generate dynamic motions for quadrupedal robots. First, a gradient-free evolution strategy is employed to discover simply represented control policies, eliminating the need for a predefined reference motion. Then, we refine these policies using deep reinforcement learning. Our approach enables the acquisition of complex motions like pronking and back-flipping, effectively from scratch. Additionally, our method simplifies the traditionally labour-intensive task of reward shaping, boosting the efficiency of the learning process. Importantly, our framework proves particularly effective for articulated soft quadrupeds, whose inherent compliance and adaptability make them ideal for dynamic tasks but also introduce unique control challenges.
In a recent paper, Ling et al. investigated the over-parametrized Deep Equilibrium Model (DEQ) with ReLU activation. They proved that the gradient descent converges to a globally optimal solution for the quadratic loss function at a linear convergence rate. This paper shows that this fact still holds for DEQs with any generally bounded activation with bounded first and second derivatives. Since the new activation function is generally non-homogeneous, bounding the least eigenvalue of the Gram matrix of the equilibrium point is particularly challenging. To accomplish this task, we must create a novel population Gram matrix and develop a new form of dual activation with Hermite polynomial expansion.
With the upcoming AI regulations (e.g., EU AI Act) and rapid advancements in generative AI, new challenges emerge in the area of Human-Centered Responsible Artificial Intelligence (HCR-AI). As AI becomes more ubiquitous, questions around decision-making authority, human oversight, accountability, sustainability, and the ethical and legal responsibilities of AI and their creators become paramount. Addressing these questions requires a collaborative approach. By involving stakeholders from various disciplines in the 2\textsuperscript{nd} edition of the HCR-AI Special Interest Group (SIG) at CHI 2024, we aim to discuss the implications of regulations in HCI research, develop new theories, evaluation frameworks, and methods to navigate the complex nature of AI ethics, steering AI development in a direction that is beneficial and sustainable for all of humanity.
Large Language Models (LLMs) are a class of generative AI models built using the Transformer network, capable of leveraging vast datasets to identify, summarize, translate, predict, and generate language. LLMs promise to revolutionize society, yet training these foundational models poses immense challenges. Semantic vector search within large language models is a potent technique that can significantly enhance search result accuracy and relevance. Unlike traditional keyword-based search methods, semantic search utilizes the meaning and context of words to grasp the intent behind queries and deliver more precise outcomes. Elasticsearch emerges as one of the most popular tools for implementing semantic search an exceptionally scalable and robust search engine designed for indexing and searching extensive datasets. In this article, we delve into the fundamentals of semantic search and explore how to harness Elasticsearch and Transformer models to bolster large language model processing paradigms. We gain a comprehensive understanding of semantic search principles and acquire practical skills for implementing semantic search in real-world model application scenarios.
The dominating NLP paradigm of training a strong neural predictor to perform one task on a specific dataset has led to state-of-the-art performance in a variety of applications (eg. sentiment classification, span-prediction based question answering or machine translation). However, it builds upon the assumption that the data distribution is stationary, ie. that the data is sampled from a fixed distribution both at training and test time. This way of training is inconsistent with how we as humans are able to learn from and operate within a constantly changing stream of information. Moreover, it is ill-adapted to real-world use cases where the data distribution is expected to shift over the course of a model's lifetime. The first goal of this thesis is to characterize the different forms this shift can take in the context of natural language processing, and propose benchmarks and evaluation metrics to measure its effect on current deep learning architectures. We then proceed to take steps to mitigate the effect of distributional shift on NLP models. To this end, we develop methods based on parametric reformulations of the distributionally robust optimization framework. Empirically, we demonstrate that these approaches yield more robust models as demonstrated on a selection of realistic problems. In the third and final part of this thesis, we explore ways of efficiently adapting existing models to new domains or tasks. Our contribution to this topic takes inspiration from information geometry to derive a new gradient update rule which alleviate catastrophic forgetting issues during adaptation.
Deep Convolutional Neural Networks (CNNs) are a special type of Neural Networks, which have shown state-of-the-art results on various competitive benchmarks. The powerful learning ability of deep CNN is largely achieved with the use of multiple non-linear feature extraction stages that can automatically learn hierarchical representation from the data. Availability of a large amount of data and improvements in the hardware processing units have accelerated the research in CNNs and recently very interesting deep CNN architectures are reported. The recent race in deep CNN architectures for achieving high performance on the challenging benchmarks has shown that the innovative architectural ideas, as well as parameter optimization, can improve the CNN performance on various vision-related tasks. In this regard, different ideas in the CNN design have been explored such as use of different activation and loss functions, parameter optimization, regularization, and restructuring of processing units. However, the major improvement in representational capacity is achieved by the restructuring of the processing units. Especially, the idea of using a block as a structural unit instead of a layer is gaining substantial appreciation. This survey thus focuses on the intrinsic taxonomy present in the recently reported CNN architectures and consequently, classifies the recent innovations in CNN architectures into seven different categories. These seven categories are based on spatial exploitation, depth, multi-path, width, feature map exploitation, channel boosting and attention. Additionally, it covers the elementary understanding of the CNN components and sheds light on the current challenges and applications of CNNs.