亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

For statistical inference on an infinite-dimensional Hilbert space $\H $ with no moment conditions we introduce a new class of energy distances on the space of probability measures on $\H$. The proposed distances consist of the integrated squared modulus of the corresponding difference of the characteristic functionals with respect to a reference probability measure on the Hilbert space. Necessary and sufficient conditions are established for the reference probability measure to be {\em characteristic}, the property that guarantees that the distance defines a metric on the space of probability measures on $\H$. We also use these results to define new distance covariances, which can be used to measure the dependence between the marginals of a two dimensional distribution of $\H^2$ without existing moments. On the basis of the new distances we develop statistical inference for Hilbert space valued data, which does not require any moment assumptions. As a consequence, our methods are robust with respect to heavy tails in finite dimensional data. In particular, we consider the problem of comparing the distributions of two samples and the problem of testing for independence and construct new minimax optimal tests for the corresponding hypotheses. We also develop aggregated (with respect to the reference measure) procedures for power enhancement and investigate the finite-sample properties by means of a simulation study.

相關內容

In this article, we develop a new class of multivariate distributions adapted for count data, called Tree P{\'o}lya Splitting. This class results from the combination of a univariate distribution and singular multivariate distributions along a fixed partition tree. As we will demonstrate, these distributions are flexible, allowing for the modeling of complex dependencies (positive, negative, or null) at the observation level. Specifically, we present the theoretical properties of Tree P{\'o}lya Splitting distributions by focusing primarily on marginal distributions, factorial moments, and dependency structures (covariance and correlations). The abundance of 17 species of Trichoptera recorded at 49 sites is used, on one hand, to illustrate the theoretical properties developed in this article on a concrete case, and on the other hand, to demonstrate the interest of this type of models, notably by comparing them to classical approaches in ecology or microbiome.

In this paper we compare two numerical methods to integrate Riemannian cubic polynomials on the Stiefel manifold $\textbf{St}_{n,k}$. The first one is the adjusted de Casteljau algorithm, and the second one is a symplectic integrator constructed through discretization maps. In particular, we choose the cases of $n=3$ together with $k=1$ and $k=2$. The first case is diffeomorphic to the sphere and the quasi-geodesics appearing in the adjusted de Casteljau algorithm are actually geodesics. The second case is an example where we have a pure quasi-geodesic different from a geodesic. We provide a numerical comparison of both methods and discuss the obtained results to highlight the benefits of each method.

In this paper, to address the optimization problem on a compact matrix manifold, we introduce a novel algorithmic framework called the Transformed Gradient Projection (TGP) algorithm, using the projection onto this compact matrix manifold. Compared with the existing algorithms, the key innovation in our approach lies in the utilization of a new class of search directions and various stepsizes, including the Armijo, nonmonotone Armijo, and fixed stepsizes, to guide the selection of the next iterate. Our framework offers flexibility by encompassing the classical gradient projection algorithms as special cases, and intersecting the retraction-based line-search algorithms. Notably, our focus is on the Stiefel or Grassmann manifold, revealing that many existing algorithms in the literature can be seen as specific instances within our proposed framework, and this algorithmic framework also induces several new special cases. Then, we conduct a thorough exploration of the convergence properties of these algorithms, considering various search directions and stepsizes. To achieve this, we extensively analyze the geometric properties of the projection onto compact matrix manifolds, allowing us to extend classical inequalities related to retractions from the literature. Building upon these insights, we establish the weak convergence, convergence rate, and global convergence of TGP algorithms under three distinct stepsizes. In cases where the compact matrix manifold is the Stiefel or Grassmann manifold, our convergence results either encompass or surpass those found in the literature. Finally, through a series of numerical experiments, we observe that the TGP algorithms, owing to their increased flexibility in choosing search directions, outperform classical gradient projection and retraction-based line-search algorithms in several scenarios.

We suggest novel correlation coefficients which equal the maximum correlation for a class of bivariate Lancaster distributions while being only slightly smaller than maximum correlation for a variety of further bivariate distributions. In contrast to maximum correlation, however, our correlation coefficients allow for rank and moment-based estimators which are simple to compute and have tractable asymptotic distributions. Confidence intervals resulting from these asymptotic approximations and the covariance bootstrap show good finite-sample coverage. In a simulation, the power of asymptotic as well as permutation tests for independence based on our correlation measures compares favorably with competing methods based on distance correlation or rank coefficients for functional dependence, among others. Moreover, for the bivariate normal distribution, our correlation coefficients equal the absolute value of the Pearson correlation, an attractive feature for practitioners which is not shared by various competitors. We illustrate the practical usefulness of our methods in applications to two real data sets.

Recent papers initiated the study of a generalization of group testing where the potentially contaminated sets are the members of a given hypergraph F=(V,E). This generalization finds application in contexts where contaminations can be conditioned by some kinds of social and geographical clusterings. The paper focuses on few-stage group testing algorithms, i.e., slightly adaptive algorithms where tests are performed in stages and all tests performed in the same stage should be decided at the very beginning of the stage. In particular, the paper presents the first two-stage algorithm that uses o(dlog|E|) tests for general hypergraphs with hyperedges of size at most d, and a three-stage algorithm that improves by a d^{1/6} factor on the number of tests of the best known three-stage algorithm. These algorithms are special cases of an s-stage algorithm designed for an arbitrary positive integer s<= d. The design of this algorithm resort to a new non-adaptive algorithm (one-stage algorithm), i.e., an algorithm where all tests must be decided beforehand. Further, we derive a lower bound for non-adaptive group testing. For E sufficiently large, the lower bound is very close to the upper bound on the number of tests of the best non-adaptive group testing algorithm known in the literature, and it is the first lower bound that improves on the information theoretic lower bound Omega(log |E|).

The fine-grained complexity of computing the Fr\'echet distance has been a topic of much recent work, starting with the quadratic SETH-based conditional lower bound by Bringmann from 2014. Subsequent work established largely the same complexity lower bounds for the Fr\'echet distance in 1D. However, the imbalanced case, which was shown by Bringmann to be tight in dimensions $d\geq 2$, was still left open. Filling in this gap, we show that a faster algorithm for the Fr\'echet distance in the imbalanced case is possible: Given two 1-dimensional curves of complexity $n$ and $n^{\alpha}$ for some $\alpha \in (0,1)$, we can compute their Fr\'echet distance in $O(n^{2\alpha} \log^2 n + n \log n)$ time. This rules out a conditional lower bound of the form $O((nm)^{1-\epsilon})$ that Bringmann showed for $d \geq 2$ and any $\varepsilon>0$ in turn showing a strict separation with the setting $d=1$. At the heart of our approach lies a data structure that stores a 1-dimensional curve $P$ of complexity $n$, and supports queries with a curve $Q$ of complexity~$m$ for the continuous Fr\'echet distance between $P$ and $Q$. The data structure has size in $\mathcal{O}(n\log n)$ and uses query time in $\mathcal{O}(m^2 \log^2 n)$. Our proof uses a key lemma that is based on the concept of visiting orders and may be of independent interest. We demonstrate this by substantially simplifying the correctness proof of a clustering algorithm by Driemel, Krivo\v{s}ija and Sohler from 2015.

Many problems in high-dimensional statistics appear to have a statistical-computational gap: a range of values of the signal-to-noise ratio where inference is information-theoretically possible, but (conjecturally) computationally intractable. A canonical such problem is Tensor PCA, where we observe a tensor $Y$ consisting of a rank-one signal plus Gaussian noise. Multiple lines of work suggest that Tensor PCA becomes computationally hard at a critical value of the signal's magnitude. In particular, below this transition, no low-degree polynomial algorithm can detect the signal with high probability; conversely, various spectral algorithms are known to succeed above this transition. We unify and extend this work by considering tensor networks, orthogonally invariant polynomials where multiple copies of $Y$ are "contracted" to produce scalars, vectors, matrices, or other tensors. We define a new set of objects, tensor cumulants, which provide an explicit, near-orthogonal basis for invariant polynomials of a given degree. This basis lets us unify and strengthen previous results on low-degree hardness, giving a combinatorial explanation of the hardness transition and of a continuum of subexponential-time algorithms that work below it, and proving tight lower bounds against low-degree polynomials for recovering rather than just detecting the signal. It also lets us analyze a new problem of distinguishing between different tensor ensembles, such as Wigner and Wishart tensors, establishing a sharp computational threshold and giving evidence of a new statistical-computational gap in the Central Limit Theorem for random tensors. Finally, we believe these cumulants are valuable mathematical objects in their own right: they generalize the free cumulants of free probability theory from matrices to tensors, and share many of their properties, including additivity under additive free convolution.

In this paper, we propose a novel multiscale model reduction strategy tailored to address the Poisson equation within heterogeneous perforated domains. The numerical simulation of this intricate problem is impeded by its multiscale characteristics, necessitating an exceptionally fine mesh to adequately capture all relevant details. To overcome the challenges inherent in the multiscale nature of the perforations, we introduce a coarse space constructed using the Constraint Energy Minimizing Generalized Multiscale Finite Element Method (CEM-GMsFEM). This involves constructing basis functions through a sequence of local energy minimization problems over eigenspaces containing localized information pertaining to the heterogeneities. Through our analysis, we demonstrate that the oversampling layers depend on the local eigenvalues, thereby implicating the local geometry as well. Additionally, we provide numerical examples to illustrate the efficacy of the proposed scheme.

We study lower bounds on the worst-case error of numerical integration in tensor product spaces. As reference we use the $N$-th minimal error of linear rules that use $N$ function values. The information complexity is the minimal number $N$ of function evaluations that is necessary such that the $N$-th minimal error is less than a factor $\varepsilon$ times the initial error. We are interested to which extent the information complexity depends on the number $d$ of variables of the integrands. If the information complexity grows exponentially fast in $d$, then the integration problem is said to suffer from the curse of dimensionality. Under the assumption of the existence of a worst-case function for the uni-variate problem we present two methods for providing good lower bounds on the information complexity. The first method is based on a suitable decomposition of the worst-case function. This method can be seen as a generalization of the method of decomposable reproducing kernels, that is often successfully applied when integration in Hilbert spaces with a reproducing kernel is studied. The second method, although only applicable for positive quadrature rules, has the advantage, that it does not require a suitable decomposition of the worst-case function. Rather, it is based on a spline approximation of the worst-case function and can be used for analytic functions. The methods presented can be applied to problems beyond the Hilbert space setting. For demonstration purposes we apply them to several examples, notably to uniform integration over the unit-cube, weighted integration over the whole space, and integration of infinitely smooth functions over the cube. Some of these results have interesting consequences in discrepancy theory.

We introduce a new conjecture on the computational hardness of detecting random lifts of graphs: we claim that there is no polynomial-time algorithm that can distinguish between a large random $d$-regular graph and a large random lift of a Ramanujan $d$-regular base graph (provided that the lift is corrupted by a small amount of extra noise), and likewise for bipartite random graphs and lifts of bipartite Ramanujan graphs. We give evidence for this conjecture by proving lower bounds against the local statistics hierarchy of hypothesis testing semidefinite programs. We then explore the consequences of this conjecture for the hardness of certifying bounds on numerous functions of random regular graphs, expanding on a direction initiated by Bandeira, Banks, Kunisky, Moore, and Wein (2021). Conditional on this conjecture, we show that no polynomial-time algorithm can certify tight bounds on the maximum cut of random 3- or 4-regular graphs, the maximum independent set of random 3- or 4-regular graphs, or the chromatic number of random 7-regular graphs. We show similar gaps asymptotically for large degree for the maximum independent set and for any degree for the minimum dominating set, finding that naive spectral and combinatorial bounds are optimal among all polynomial-time certificates. Likewise, for small-set vertex and edge expansion in the limit of very small sets, we show that the spectral bounds of Kahale (1995) are optimal among all polynomial-time certificates.

北京阿比特科技有限公司