亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Clinical use of finite element analysis requires validation and reproducibility studies. The current study compared two models of vertebral bodies including endplates, on the same experimental dataset and evaluated the influence of the operator on the failure load. Models used were strongly correlated (R2=0.91). The intra-operator reproducibility was 6.4% and 3.5 % for each model. Both simulated results were close to experimental results. The differences in performance could be associated to the differences in segmentation process, mesh (hexahedral vs tetrahedral), material representation and failure criteria. Linear analysis did not decrease model accuracy. Comparison with literature for accuracy and precision shows a wide range of values partly related to the different experimental datasets and the different modelling approaches. Models benchmark using the same experimental dataset are needed to go towards clinical applications.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · 約束 · MoDELS · Performer · TOOLS ·
2024 年 3 月 27 日

In the context of the model-driven development of data-centric applications, OCL constraints play a major role in adding precision to the source models (e.g., data models and security models). Several code-generators have been proposed to bridge the gap between source models with OCL constraints and their corresponding database implementations. However, the database queries produced by these code-generators are significantly less efficient -- from the point of view of execution-time performance -- than the implementations manually written by database experts. In this paper, we propose a different approach to bridge the gap between models with OCL constraints and their corresponding database implementations. In particular, we introduce a model-based methodology for proving the correctness of manually written SQL implementations of OCL constraints. This methodology is based on a novel mapping from a significant subset of the SQL language into many-sorted first-order logic. Moreover, by leveraging on an already existing mapping from the OCL language into many-sorted first-order logic, we can use SMT solvers to automatically prove the correctness of SQL implementations of OCL constraints. To illustrate and show the applicability of our approach, we include in the paper a number of non-trivial examples. Finally, we report on the status of a suite of tools supporting our approach.

We propose a method to detect model misspecifications in nonlinear causal additive and potentially heteroscedastic noise models. We aim to identify predictor variables for which we can infer the causal effect even in cases of such misspecification. We develop a general framework based on knowledge of the multivariate observational data distribution. We then propose an algorithm for finite sample data, discuss its asymptotic properties, and illustrate its performance on simulated and real data.

Energy-efficient spikformer has been proposed by integrating the biologically plausible spiking neural network (SNN) and artificial Transformer, whereby the Spiking Self-Attention (SSA) is used to achieve both higher accuracy and lower computational cost. However, it seems that self-attention is not always necessary, especially in sparse spike-form calculation manners. In this paper, we innovatively replace vanilla SSA (using dynamic bases calculating from Query and Key) with spike-form Fourier Transform, Wavelet Transform, and their combinations (using fixed triangular or wavelets bases), based on a key hypothesis that both of them use a set of basis functions for information transformation. Hence, the Fourier-or-Wavelet-based spikformer (FWformer) is proposed and verified in visual classification tasks, including both static image and event-based video datasets. The FWformer can achieve comparable or even higher accuracies ($0.4\%$-$1.5\%$), higher running speed ($9\%$-$51\%$ for training and $19\%$-$70\%$ for inference), reduced theoretical energy consumption ($20\%$-$25\%$), and reduced GPU memory usage ($4\%$-$26\%$), compared to the standard spikformer. Our result indicates the continuous refinement of new Transformers, that are inspired either by biological discovery (spike-form), or information theory (Fourier or Wavelet Transform), is promising.

This paper presents a Bayesian regression model relating scalar outcomes to brain functional connectivity represented as symmetric positive definite (SPD) matrices. Unlike many proposals that simply vectorize the matrix-valued connectivity predictors thereby ignoring their geometric structure, the method presented here respects the Riemannian geometry of SPD matrices by using a tangent space modeling. Dimension reduction is performed in the tangent space, relating the resulting low-dimensional representations to the responses. The dimension reduction matrix is learned in a supervised manner with a sparsity-inducing prior imposed on a Stiefel manifold to prevent overfitting. Our method yields a parsimonious regression model that allows uncertainty quantification of all model parameters and identification of key brain regions that predict the outcomes. We demonstrate the performance of our approach in simulation settings and through a case study to predict Picture Vocabulary scores using data from the Human Connectome Project.

We propose an unfolded accelerated projected-gradient descent procedure to estimate model and algorithmic parameters for image super-resolution and molecule localization problems in image microscopy. The variational lower-level constraint enforces sparsity of the solution and encodes different noise statistics (Gaussian, Poisson), while the upper-level cost assesses optimality w.r.t.~the task considered. In more detail, a standard $\ell_2$ cost is considered for image reconstruction (e.g., deconvolution/super-resolution, semi-blind deconvolution) problems, while a smoothed $\ell_1$ is employed to assess localization precision in some exemplary fluorescence microscopy problems exploiting single-molecule activation. Several numerical experiments are reported to validate the proposed approach on synthetic and realistic ISBI data.

The paper presents a new approach of stability evaluation of the approximate Riemann solvers based on the direct Lyapunov method. The present methodology offers a detailed understanding of the origins of numerical shock instability in the approximate Riemann solvers. The pressure perturbation feeding the density and transverse momentum perturbations is identified as the cause of the numerical shock instabilities in the complete approximate Riemann solvers, while the magnitude of the numerical shock instabilities are found to be proportional to the magnitude of the pressure perturbations. A shock-stable HLLEM scheme is proposed based on the insights obtained from this analysis about the origins of numerical shock instability in the approximate Riemann solvers. A set of numerical test cases are solved to show that the proposed scheme is free from numerical shock instability problems of the original HLLEM scheme at high Mach numbers.

This paper studies optimal hypothesis testing for nonregular statistical models with parameter-dependent support. We consider both one-sided and two-sided hypothesis testing and develop asymptotically uniformly most powerful tests based on the likelihood ratio process. The proposed one-sided test involves randomization to achieve asymptotic size control, some tuning constant to avoid discontinuities in the limiting likelihood ratio process, and a user-specified alternative hypothetical value to achieve the asymptotic optimality. Our two-sided test becomes asymptotically uniformly most powerful without imposing further restrictions such as unbiasedness. Simulation results illustrate desirable power properties of the proposed tests.

Asymptotic methods for hypothesis testing in high-dimensional data usually require the dimension of the observations to increase to infinity, often with an additional condition on its rate of increase compared to the sample size. On the other hand, multivariate asymptotic methods are valid for fixed dimension only, and their practical implementations in hypothesis testing methodology typically require the sample size to be large compared to the dimension for yielding desirable results. However, in practical scenarios, it is usually not possible to determine whether the dimension of the data at hand conform to the conditions required for the validity of the high-dimensional asymptotic methods, or whether the sample size is large enough compared to the dimension of the data. In this work, a theory of asymptotic convergence is proposed, which holds uniformly over the dimension of the random vectors. This theory attempts to unify the asymptotic results for fixed-dimensional multivariate data and high-dimensional data, and accounts for the effect of the dimension of the data on the performance of the hypothesis testing procedures. The methodology developed based on this asymptotic theory can be applied to data of any dimension. An application of this theory is demonstrated in the two-sample test for the equality of locations. The test statistic proposed is unscaled by the sample covariance, similar to usual tests for high-dimensional data. Using simulated examples, it is demonstrated that the proposed test exhibits better performance compared to several popular tests in the literature for high-dimensional data. Further, it is demonstrated in simulated models that the proposed unscaled test performs better than the usual scaled two-sample tests for multivariate data, including the Hotelling's $T^2$ test for multivariate Gaussian data.

Conformal prediction equips machine learning models with a reasonable notion of uncertainty quantification without making strong distributional assumptions. It wraps around any black-box prediction model and converts point predictions into set predictions that have a predefined marginal coverage guarantee. However, conformal prediction only works if we fix the underlying machine learning model in advance. A relatively unaddressed issue in conformal prediction is that of model selection and/or aggregation: for a given problem, which of the plethora of prediction methods (random forests, neural nets, regularized linear models, etc.) should we conformalize? This paper proposes a new approach towards conformal model aggregation in online settings that is based on combining the prediction sets from several algorithms by voting, where weights on the models are adapted over time based on past performance.

The present study introduces an advanced multi-physics and multi-scale modeling approach to investigate in silico colon motility. We introduce a generalized electromechanical framework, integrating cellular electrophysiology and smooth muscle contractility, thus advancing a first-of-its-kind computational model of laser tissue soldering after incision resection. The proposed theoretical framework comprises three main elements: a microstructural material model describing intestine wall geometry and composition of reinforcing fibers, with four fiber families, two active-conductive and two passive; an electrophysiological model describing the propagation of slow waves, based on a fully-coupled nonlinear phenomenological approach; and a thermodynamical consistent mechanical model describing the hyperelastic energetic contributions ruling tissue equilibrium under diverse loading conditions. The active strain approach was adopted to describe tissue electromechanics by exploiting the multiplicative decomposition of the deformation gradient for each active fiber family and solving the governing equations via a staggered finite element scheme. The computational framework was fine-tuned according to state-of-the-art experimental evidence, and extensive numerical analyses allowed us to compare manometric traces computed via numerical simulations with those obtained clinically in human patients. The model proved capable of reproducing both qualitatively and quantitatively high or low-amplitude propagation contractions. Colon motility after laser tissue soldering demonstrates that material properties and couplings of the deposited tissue are critical to reproducing a physiological muscular contraction, thus restoring a proper peristaltic activity.

北京阿比特科技有限公司