Visual recognition has been dominated by convolutionalneural networks (CNNs) for years. Though recently the pre-vailing vision transformers (ViTs) have shown great poten-tial of self-attention based models in ImageNet classifica-tion, their performance is still inferior to latest SOTA CNNsif no extra data are provided. In this work, we aim to closethe performance gap and demonstrate that attention-basedmodels are indeed able to outperform CNNs. We found thatthe main factor limiting the performance of ViTs for Ima-geNet classification is their low efficacy in encoding fine-level features into the token representations. To resolvethis, we introduce a noveloutlook attentionand present asimple and general architecture, termed Vision Outlooker(VOLO). Unlike self-attention that focuses on global depen-dency modeling at a coarse level, the outlook attention aimsto efficiently encode finer-level features and contexts intotokens, which are shown to be critical for recognition per-formance but largely ignored by the self-attention. Experi-ments show that our VOLO achieves 87.1% top-1 accuracyon ImageNet-1K classification, being the first model exceed-ing 87% accuracy on this competitive benchmark, withoutusing any extra training data. In addition, the pre-trainedVOLO transfers well to downstream tasks, such as seman-tic segmentation. We achieve 84.3% mIoU score on thecityscapes validation set and 54.3% on the ADE20K valida-tion set. Code is available at //github.com/sail-sg/volo.
Computer vision tasks such as object detection and semantic/instance segmentation rely on the painstaking annotation of large training datasets. In this paper, we propose LocTex that takes advantage of the low-cost localized textual annotations (i.e., captions and synchronized mouse-over gestures) to reduce the annotation effort. We introduce a contrastive pre-training framework between images and captions and propose to supervise the cross-modal attention map with rendered mouse traces to provide coarse localization signals. Our learned visual features capture rich semantics (from free-form captions) and accurate localization (from mouse traces), which are very effective when transferred to various downstream vision tasks. Compared with ImageNet supervised pre-training, LocTex can reduce the size of the pre-training dataset by 10x or the target dataset by 2x while achieving comparable or even improved performance on COCO instance segmentation. When provided with the same amount of annotations, LocTex achieves around 4% higher accuracy than the previous state-of-the-art "vision+language" pre-training approach on the task of PASCAL VOC image classification.
With recent progress in joint modeling of visual and textual representations, Vision-Language Pretraining (VLP) has achieved impressive performance on many multimodal downstream tasks. However, the requirement for expensive annotations including clean image captions and regional labels limits the scalability of existing approaches, and complicates the pretraining procedure with the introduction of multiple dataset-specific objectives. In this work, we relax these constraints and present a minimalist pretraining framework, named Simple Visual Language Model (SimVLM). Unlike prior work, SimVLM reduces the training complexity by exploiting large-scale weak supervision, and is trained end-to-end with a single prefix language modeling objective. Without utilizing extra data or task-specific customization, the resulting model significantly outperforms previous pretraining methods and achieves new state-of-the-art results on a wide range of discriminative and generative vision-language benchmarks, including VQA (+3.74% vqa-score), NLVR2 (+1.17% accuracy), SNLI-VE (+1.37% accuracy) and image captioning tasks (+10.1% average CIDEr score). Furthermore, we demonstrate that SimVLM acquires strong generalization and transfer ability, enabling zero-shot behavior including open-ended visual question answering and cross-modality transfer.
Current approaches for video grounding propose kinds of complex architectures to capture the video-text relations, and have achieved impressive improvements. However, it is hard to learn the complicated multi-modal relations by only architecture designing in fact. In this paper, we introduce a novel Support-set Based Cross-Supervision (Sscs) module which can improve existing methods during training phase without extra inference cost. The proposed Sscs module contains two main components, i.e., discriminative contrastive objective and generative caption objective. The contrastive objective aims to learn effective representations by contrastive learning, while the caption objective can train a powerful video encoder supervised by texts. Due to the co-existence of some visual entities in both ground-truth and background intervals, i.e., mutual exclusion, naively contrastive learning is unsuitable to video grounding. We address the problem by boosting the cross-supervision with the support-set concept, which collects visual information from the whole video and eliminates the mutual exclusion of entities. Combined with the original objectives, Sscs can enhance the abilities of multi-modal relation modeling for existing approaches. We extensively evaluate Sscs on three challenging datasets, and show that our method can improve current state-of-the-art methods by large margins, especially 6.35% in terms of [email protected] on Charades-STA.
To date, most existing self-supervised learning methods are designed and optimized for image classification. These pre-trained models can be sub-optimal for dense prediction tasks due to the discrepancy between image-level prediction and pixel-level prediction. To fill this gap, we aim to design an effective, dense self-supervised learning method that directly works at the level of pixels (or local features) by taking into account the correspondence between local features. We present dense contrastive learning, which implements self-supervised learning by optimizing a pairwise contrastive (dis)similarity loss at the pixel level between two views of input images. Compared to the baseline method MoCo-v2, our method introduces negligible computation overhead (only <1% slower), but demonstrates consistently superior performance when transferring to downstream dense prediction tasks including object detection, semantic segmentation and instance segmentation; and outperforms the state-of-the-art methods by a large margin. Specifically, over the strong MoCo-v2 baseline, our method achieves significant improvements of 2.0% AP on PASCAL VOC object detection, 1.1% AP on COCO object detection, 0.9% AP on COCO instance segmentation, 3.0% mIoU on PASCAL VOC semantic segmentation and 1.8% mIoU on Cityscapes semantic segmentation. Code is available at: //git.io/AdelaiDet
In this work, we propose a generally applicable transformation unit for visual recognition with deep convolutional neural networks. This transformation explicitly models channel relationships with explainable control variables. These variables determine the neuron behaviors of competition or cooperation, and they are jointly optimized with the convolutional weight towards more accurate recognition. In Squeeze-and-Excitation (SE) Networks, the channel relationships are implicitly learned by fully connected layers, and the SE block is integrated at the block-level. We instead introduce a channel normalization layer to reduce the number of parameters and computational complexity. This lightweight layer incorporates a simple l2 normalization, enabling our transformation unit applicable to operator-level without much increase of additional parameters. Extensive experiments demonstrate the effectiveness of our unit with clear margins on many vision tasks, i.e., image classification on ImageNet, object detection and instance segmentation on COCO, video classification on Kinetics.
In Visual Question Answering (VQA), answers have a great correlation with question meaning and visual contents. Thus, to selectively utilize image, question and answer information, we propose a novel trilinear interaction model which simultaneously learns high level associations between these three inputs. In addition, to overcome the interaction complexity, we introduce a multimodal tensor-based PARALIND decomposition which efficiently parameterizes trilinear interaction between the three inputs. Moreover, knowledge distillation is first time applied in Free-form Opened-ended VQA. It is not only for reducing the computational cost and required memory but also for transferring knowledge from trilinear interaction model to bilinear interaction model. The extensive experiments on benchmarking datasets TDIUC, VQA-2.0, and Visual7W show that the proposed compact trilinear interaction model achieves state-of-the-art results when using a single model on all three datasets.
The convolution layer has been the dominant feature extractor in computer vision for years. However, the spatial aggregation in convolution is basically a pattern matching process that applies fixed filters which are inefficient at modeling visual elements with varying spatial distributions. This paper presents a new image feature extractor, called the local relation layer, that adaptively determines aggregation weights based on the compositional relationship of local pixel pairs. With this relational approach, it can composite visual elements into higher-level entities in a more efficient manner that benefits semantic inference. A network built with local relation layers, called the Local Relation Network (LR-Net), is found to provide greater modeling capacity than its counterpart built with regular convolution on large-scale recognition tasks such as ImageNet classification.
We present SlowFast networks for video recognition. Our model involves (i) a Slow pathway, operating at low frame rate, to capture spatial semantics, and (ii) a Fast pathway, operating at high frame rate, to capture motion at fine temporal resolution. The Fast pathway can be made very lightweight by reducing its channel capacity, yet can learn useful temporal information for video recognition. Our models achieve strong performance for both action classification and detection in video, and large improvements are pin-pointed as contributions by our SlowFast concept. We report state-of-the-art accuracy on major video recognition benchmarks, Kinetics, Charades and AVA. Code will be made publicly available in PyTorch.
State-of-the-art deep convolutional networks (DCNs) such as squeeze-and- excitation (SE) residual networks implement a form of attention, also known as contextual guidance, which is derived from global image features. Here, we explore a complementary form of attention, known as visual saliency, which is derived from local image features. We extend the SE module with a novel global-and-local attention (GALA) module which combines both forms of attention -- resulting in state-of-the-art accuracy on ILSVRC. We further describe ClickMe.ai, a large-scale online experiment designed for human participants to identify diagnostic image regions to co-train a GALA network. Adding humans-in-the-loop is shown to significantly improve network accuracy, while also yielding visual features that are more interpretable and more similar to those used by human observers.
Recently, substantial research effort has focused on how to apply CNNs or RNNs to better extract temporal patterns from videos, so as to improve the accuracy of video classification. In this paper, however, we show that temporal information, especially longer-term patterns, may not be necessary to achieve competitive results on common video classification datasets. We investigate the potential of a purely attention based local feature integration. Accounting for the characteristics of such features in video classification, we propose a local feature integration framework based on attention clusters, and introduce a shifting operation to capture more diverse signals. We carefully analyze and compare the effect of different attention mechanisms, cluster sizes, and the use of the shifting operation, and also investigate the combination of attention clusters for multimodal integration. We demonstrate the effectiveness of our framework on three real-world video classification datasets. Our model achieves competitive results across all of these. In particular, on the large-scale Kinetics dataset, our framework obtains an excellent single model accuracy of 79.4% in terms of the top-1 and 94.0% in terms of the top-5 accuracy on the validation set. The attention clusters are the backbone of our winner solution at ActivityNet Kinetics Challenge 2017. Code and models will be released soon.