亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In current applied research the most-used route to an analysis of composition is through log-ratios -- that is, contrasts among log-transformed measurements. Here we argue instead for a more direct approach, using a statistical model for the arithmetic mean on the original scale of measurement. Central to the approach is a general variance-covariance function, derived by assuming multiplicative measurement error. Quasi-likelihood analysis of logit models for composition is then a general alternative to the use of multivariate linear models for log-ratio transformed measurements, and it has important advantages. These include robustness to secondary aspects of model specification, stability when there are zero-valued or near-zero measurements in the data, and more direct interpretation. The usual efficiency property of quasi-likelihood estimation applies even when the error covariance matrix is unspecified. We also indicate how the derived variance-covariance function can be used, instead of the variance-covariance matrix of log-ratios, with more general multivariate methods for the analysis of composition. A specific feature is that the notion of `null correlation' -- for compositional measurements on their original scale -- emerges naturally.

相關內容

Graph representation learning (GRL) is critical for extracting insights from complex network structures, but it also raises security concerns due to potential privacy vulnerabilities in these representations. This paper investigates the structural vulnerabilities in graph neural models where sensitive topological information can be inferred through edge reconstruction attacks. Our research primarily addresses the theoretical underpinnings of cosine-similarity-based edge reconstruction attacks (COSERA), providing theoretical and empirical evidence that such attacks can perfectly reconstruct sparse Erdos Renyi graphs with independent random features as graph size increases. Conversely, we establish that sparsity is a critical factor for COSERA's effectiveness, as demonstrated through analysis and experiments on stochastic block models. Finally, we explore the resilience of (provably) private graph representations produced via noisy aggregation (NAG) mechanism against COSERA. We empirically delineate instances wherein COSERA demonstrates both efficacy and deficiency in its capacity to function as an instrument for elucidating the trade-off between privacy and utility.

Constant (naive) imputation is still widely used in practice as this is a first easy-to-use technique to deal with missing data. Yet, this simple method could be expected to induce a large bias for prediction purposes, as the imputed input may strongly differ from the true underlying data. However, recent works suggest that this bias is low in the context of high-dimensional linear predictors when data is supposed to be missing completely at random (MCAR). This paper completes the picture for linear predictors by confirming the intuition that the bias is negligible and that surprisingly naive imputation also remains relevant in very low dimension.To this aim, we consider a unique underlying random features model, which offers a rigorous framework for studying predictive performances, whilst the dimension of the observed features varies.Building on these theoretical results, we establish finite-sample bounds on stochastic gradient (SGD) predictors applied to zero-imputed data, a strategy particularly well suited for large-scale learning.If the MCAR assumption appears to be strong, we show that similar favorable behaviors occur for more complex missing data scenarios.

Gaussian processes are a widely embraced technique for regression and classification due to their good prediction accuracy, analytical tractability and built-in capabilities for uncertainty quantification. However, they suffer from the curse of dimensionality whenever the number of variables increases. This challenge is generally addressed by assuming additional structure in theproblem, the preferred options being either additivity or low intrinsic dimensionality. Our contribution for high-dimensional Gaussian process modeling is to combine them with a multi-fidelity strategy, showcasing the advantages through experiments on synthetic functions and datasets.

Spatially distributed functional data are prevalent in many statistical applications such as meteorology, energy forecasting, census data, disease mapping, and neurological studies. Given their complex and high-dimensional nature, functional data often require dimension reduction methods to extract meaningful information. Inverse regression is one such approach that has become very popular in the past two decades. We study the inverse regression in the framework of functional data observed at irregularly positioned spatial sites. The functional predictor is the sum of a spatially dependent functional effect and a spatially independent functional nugget effect, while the relation between the scalar response and the functional predictor is modeled using the inverse regression framework. For estimation, we consider local linear smoothing with a general weighting scheme, which includes as special cases the schemes under which equal weights are assigned to each observation or to each subject. This framework enables us to present the asymptotic results for different types of sampling plans over time such as non-dense, dense, and ultra-dense. We discuss the domain-expanding infill (DEI) framework for spatial asymptotics, which is a mix of the traditional expanding domain and infill frameworks. The DEI framework overcomes the limitations of traditional spatial asymptotics in the existing literature. Under this unified framework, we develop asymptotic theory and identify conditions that are necessary for the estimated eigen-directions to achieve optimal rates of convergence. Our asymptotic results include pointwise and $L_2$ convergence rates. Simulation studies using synthetic data and an application to a real-world dataset confirm the effectiveness of our methods.

We consider finite element approximations to the optimal constant for the Hardy inequality with exponent $p=2$ in bounded domains of dimension $n=1$ or $n \geq 3$. For finite element spaces of piecewise linear and continuous functions on a mesh of size $h$, we prove that the approximate Hardy constant converges to the optimal Hardy constant at a rate proportional to $1/| \log h |^2$. This result holds in dimension $n=1$, in any dimension $n \geq 3$ if the domain is the unit ball and the finite element discretization exploits the rotational symmetry of the problem, and in dimension $n=3$ for general finite element discretizations of the unit ball. In the first two cases, our estimates show excellent quantitative agreement with values of the discrete Hardy constant obtained computationally.

One of the challenges of natural language understanding is to deal with the subjectivity of sentences, which may express opinions and emotions that add layers of complexity and nuance. Sentiment analysis is a field that aims to extract and analyze these subjective elements from text, and it can be applied at different levels of granularity, such as document, paragraph, sentence, or aspect. Aspect-based sentiment analysis is a well-studied topic with many available data sets and models. However, there is no clear definition of what makes a sentence difficult for aspect-based sentiment analysis. In this paper, we explore this question by conducting an experiment with three data sets: "Laptops", "Restaurants", and "MTSC" (Multi-Target-dependent Sentiment Classification), and a merged version of these three datasets. We study the impact of domain diversity and syntactic diversity on difficulty. We use a combination of classifiers to identify the most difficult sentences and analyze their characteristics. We employ two ways of defining sentence difficulty. The first one is binary and labels a sentence as difficult if the classifiers fail to correctly predict the sentiment polarity. The second one is a six-level scale based on how many of the top five best-performing classifiers can correctly predict the sentiment polarity. We also define 9 linguistic features that, combined, aim at estimating the difficulty at sentence level.

We consider the problem of optimising the expected value of a loss functional over a nonlinear model class of functions, assuming that we have only access to realisations of the gradient of the loss. This is a classical task in statistics, machine learning and physics-informed machine learning. A straightforward solution is to replace the exact objective with a Monte Carlo estimate before employing standard first-order methods like gradient descent, which yields the classical stochastic gradient descent method. But replacing the true objective with an estimate ensues a ``generalisation error''. Rigorous bounds for this error typically require strong compactness and Lipschitz continuity assumptions while providing a very slow decay with sample size. We propose a different optimisation strategy relying on a natural gradient descent in which the true gradient is approximated in local linearisations of the model class via (quasi-)projections based on optimal sampling methods. Under classical assumptions on the loss and the nonlinear model class, we prove that this scheme converges almost surely monotonically to a stationary point of the true objective and we provide convergence rates.

In social choice theory with ordinal preferences, a voting method satisfies the axiom of positive involvement if adding to a preference profile a voter who ranks an alternative uniquely first cannot cause that alternative to go from winning to losing. In this note, we prove a new impossibility theorem concerning this axiom: there is no ordinal voting method satisfying positive involvement that also satisfies the Condorcet winner and loser criteria, resolvability, and a common invariance property for Condorcet methods, namely that the choice of winners depends only on the ordering of majority margins by size.

For a sequence of random structures with $n$-element domains over a relational signature, we define its first order (FO) complexity as a certain subset in the Banach space $\ell^{\infty}/c_0$. The well-known FO zero-one law and FO convergence law correspond to FO complexities equal to $\{0,1\}$ and a subset of $\mathbb{R}$, respectively. We present a hierarchy of FO complexity classes, introduce a stochastic FO reduction that allows to transfer complexity results between different random structures, and deduce using this tool several new logical limit laws for binomial random structures. Finally, we introduce a conditional distribution on graphs, subject to a FO sentence $\varphi$, that generalises certain well-known random graph models, show instances of this distribution for every complexity class, and prove that the set of all $\varphi$ validating 0--1 law is not recursively enumerable.

Support Vector Machines (SVMs) are an important tool for performing classification on scattered data, where one usually has to deal with many data points in high-dimensional spaces. We propose solving SVMs in primal form using feature maps based on trigonometric functions or wavelets. In small dimensional settings the Fast Fourier Transform (FFT) and related methods are a powerful tool in order to deal with the considered basis functions. For growing dimensions the classical FFT-based methods become inefficient due to the curse of dimensionality. Therefore, we restrict ourselves to multivariate basis functions, each one of them depends only on a small number of dimensions. This is motivated by the well-known sparsity of effects and recent results regarding the reconstruction of functions from scattered data in terms of truncated analysis of variance (ANOVA) decomposition, which makes the resulting model even interpretable in terms of importance of the features as well as their couplings. The usage of small superposition dimensions has the consequence that the computational effort no longer grows exponentially but only polynomially with respect to the dimension. In order to enforce sparsity regarding the basis coefficients, we use the frequently applied $\ell_2$-norm and, in addition, $\ell_1$-norm regularization. The found classifying function, which is the linear combination of basis functions, and its variance can then be analyzed in terms of the classical ANOVA decomposition of functions. Based on numerical examples we show that we are able to recover the signum of a function that perfectly fits our model assumptions. We obtain better results with $\ell_1$-norm regularization, both in terms of accuracy and clarity of interpretability.

北京阿比特科技有限公司