亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Extensive-Form Game (EFG) represents a fundamental model for analyzing sequential interactions among multiple agents and the primary challenge to solve it lies in mitigating sample complexity. Existing research indicated that Double Oracle (DO) can reduce the sample complexity dependence on the information set number $|S|$ to the final restricted game size $X$ in solving EFG. This is attributed to the early convergence of full-game Nash Equilibrium (NE) through iteratively solving restricted games. However, we prove that the state-of-the-art Extensive-Form Double Oracle (XDO) exhibits \textit{exponential} sample complexity of $X$, due to its exponentially increasing restricted game expansion frequency. Here we introduce Adaptive Double Oracle (AdaDO) to significantly alleviate sample complexity to \textit{polynomial} by deploying the optimal expansion frequency. Furthermore, to comprehensively study the principles and influencing factors underlying sample complexity, we introduce a novel theoretical framework Regret-Minimizing Double Oracle (RMDO) to provide directions for designing efficient DO algorithms. Empirical results demonstrate that AdaDO attains the more superior approximation of NE with less sample complexity than the strong baselines including Linear CFR, MCCFR and existing DO. Importantly, combining RMDO with warm starting and stochastic regret minimization further improves convergence rate and scalability, thereby paving the way for addressing complex multi-agent tasks.

相關內容

甲骨文(wen)公(gong)司,全(quan)(quan)(quan)稱甲骨文(wen)股(gu)份有限公(gong)司(甲骨文(wen)軟(ruan)件(jian)系統有限公(gong)司),是全(quan)(quan)(quan)球(qiu)最(zui)大的(de)企業級軟(ruan)件(jian)公(gong)司,總部位(wei)于(yu)美國加(jia)利(li)福尼(ni)亞州(zhou)的(de)紅木灘。1989年(nian)正式進入(ru)中(zhong)國市場。2013年(nian),甲骨文(wen)已超(chao)越(yue) IBM ,成為繼 Microsoft 后(hou)全(quan)(quan)(quan)球(qiu)第二大軟(ruan)件(jian)公(gong)司。

Intellectual Disability (ID) is characterized by deficits in intellectual functioning and adaptive behavior, necessitating customized therapeutic interventions to improve daily life skills. This paper presents the development and evaluation of Space Exodus, a task-based role-playing Virtual Reality (VR) game designed to support therapy for children with ID. The game integrates everyday life scenarios into an immersive environment to enhance skill acquisition and transfer. Functional tests and preliminary experiments demonstrated the system's stability, usability, and adaptability, with 70--80\% of participants demonstrating successful skill transfer to new challenges. Challenges, such as VR discomfort, controller misoperation, and task complexity, were identified, emphasizing the need for ergonomic improvements and adaptive guidance. The results provide empirical evidence supporting VR as a promising tool in ID therapy. Future work will focus on refining gameplay mechanics, enhancing user guidance, and expanding accessibility to broader populations.

Vehicular fog computing (VFC) can be considered as an important alternative to address the existing challenges in intelligent transportation systems (ITS). The main purpose of VFC is to perform computational tasks through various vehicles. At present, VFCs include powerful computing resources that bring the computational resources nearer to the requesting devices. This paper presents a new algorithm based on meta-heuristic optimization method for task scheduling problem in VFC. The task scheduling in VFC is formulated as a multi-objective optimization problem, which aims to reduce makespan and monetary cost. The proposed method utilizes the grey wolf optimization (GWO) and assigns the different priorities to static and dynamic fog nodes. Dynamic fog nodes represent the parked or moving vehicles and static fog nodes show the stationary servers. Afterwards, the tasks that require the most processing resources are chosen and allocated to fog nodes. The GWO-based method is extensively evaluated in more details. Furthermore, the effectiveness of various parameters in GWO algorithm is analyzed. We also assess the proposed algorithm on real application and random data. The outcomes of our experiments confirm that, in comparison to previous works, our algorithm is capable of offering the lowest monetary cost.

We tackle the challenge of open-vocabulary segmentation, where we need to identify objects from a wide range of categories in different environments, using text prompts as our input. To overcome this challenge, existing methods often use multi-modal models like CLIP, which combine image and text features in a shared embedding space to bridge the gap between limited and extensive vocabulary recognition, resulting in a two-stage approach: In the first stage, a mask generator takes an input image to generate mask proposals, and the in the second stage the target mask is picked based on the query. However, the expected target mask may not exist in the generated mask proposals, which leads to an unexpected output mask. In our work, we propose a novel approach named Prompt-guided Mask Proposal (PMP) where the mask generator takes the input text prompts and generates masks guided by these prompts. Compared with mask proposals generated without input prompts, masks generated by PMP are better aligned with the input prompts. To realize PMP, we designed a cross-attention mechanism between text tokens and query tokens which is capable of generating prompt-guided mask proposals after each decoding. We combined our PMP with several existing works employing a query-based segmentation backbone and the experiments on five benchmark datasets demonstrate the effectiveness of this approach, showcasing significant improvements over the current two-stage models (1% ~ 3% absolute performance gain in terms of mIOU). The steady improvement in performance across these benchmarks indicates the effective generalization of our proposed lightweight prompt-aware method.

The alignment between RNA sequences and structures in foundation models (FMs) has yet to be thoroughly investigated. Existing FMs have struggled to establish sequence-structure alignment, hindering the free flow of genomic information between RNA sequences and structures. In this study, we introduce OmniGenome, an RNA FM trained to align RNA sequences with respect to secondary structures based on structure-contextualised modelling. The alignment enables free and bidirectional mappings between sequences and structures by utilising the flexible RNA modelling paradigm that supports versatile input and output modalities, i.e., sequence and/or structure as input/output. We implement RNA design and zero-shot secondary structure prediction as case studies to evaluate the Seq2Str and Str2Seq mapping capacity of OmniGenome. Results on the EternaV2 benchmark show that OmniGenome solved 74% of puzzles, whereas existing FMs only solved up to 3% of the puzzles due to the oversight of sequence-structure alignment. We leverage four comprehensive in-silico genome modelling benchmarks to evaluate performance across a diverse set of genome downstream tasks, where the results show that OmniGenome achieves state-of-the-art performance on RNA and DNA benchmarks, even without any training on DNA genomes.

Multi-objective learning endeavors to concurrently optimize multiple objectives using a single model, aiming to achieve high and balanced performance across these diverse objectives. However, it often involves a more complex optimization problem, particularly when navigating potential conflicts between objectives, leading to solutions with higher memory requirements and computational complexity. This paper introduces a Multi-Objective Goal-Conditioned Supervised Learning (MOGCSL) framework for automatically learning to achieve multiple objectives from offline sequential data. MOGCSL extends the conventional Goal-Conditioned Supervised Learning (GCSL) method to multi-objective scenarios by redefining goals from one-dimensional scalars to multi-dimensional vectors. The need for complex architectures and optimization constraints can be naturally eliminated. MOGCSL benefits from filtering out uninformative or noisy instances that do not achieve desirable long-term rewards. It also incorporates a novel goal-choosing algorithm to model and select "high" achievable goals for inference. While MOGCSL is quite general, we focus on its application to the next action prediction problem in commercial-grade recommender systems. In this context, any viable solution needs to be reasonably scalable and also be robust to large amounts of noisy data that is characteristic of this application space. We show that MOGCSL performs admirably on both counts. Specifically, extensive experiments conducted on real-world recommendation datasets validate its efficacy and efficiency. Also, analysis and experiments are included to explain its strength in discounting the noisier portions of training data in recommender systems.

Federated Learning (FL) is a decentralized machine-learning paradigm, in which a global server iteratively averages the model parameters of local users without accessing their data. User heterogeneity has imposed significant challenges to FL, which can incur drifted global models that are slow to converge. Knowledge Distillation has recently emerged to tackle this issue, by refining the server model using aggregated knowledge from heterogeneous users, other than directly averaging their model parameters. This approach, however, depends on a proxy dataset, making it impractical unless such a prerequisite is satisfied. Moreover, the ensemble knowledge is not fully utilized to guide local model learning, which may in turn affect the quality of the aggregated model. Inspired by the prior art, we propose a data-free knowledge distillation} approach to address heterogeneous FL, where the server learns a lightweight generator to ensemble user information in a data-free manner, which is then broadcasted to users, regulating local training using the learned knowledge as an inductive bias. Empirical studies powered by theoretical implications show that, our approach facilitates FL with better generalization performance using fewer communication rounds, compared with the state-of-the-art.

Exploration-exploitation is a powerful and practical tool in multi-agent learning (MAL), however, its effects are far from understood. To make progress in this direction, we study a smooth analogue of Q-learning. We start by showing that our learning model has strong theoretical justification as an optimal model for studying exploration-exploitation. Specifically, we prove that smooth Q-learning has bounded regret in arbitrary games for a cost model that explicitly captures the balance between game and exploration costs and that it always converges to the set of quantal-response equilibria (QRE), the standard solution concept for games under bounded rationality, in weighted potential games with heterogeneous learning agents. In our main task, we then turn to measure the effect of exploration in collective system performance. We characterize the geometry of the QRE surface in low-dimensional MAL systems and link our findings with catastrophe (bifurcation) theory. In particular, as the exploration hyperparameter evolves over-time, the system undergoes phase transitions where the number and stability of equilibria can change radically given an infinitesimal change to the exploration parameter. Based on this, we provide a formal theoretical treatment of how tuning the exploration parameter can provably lead to equilibrium selection with both positive as well as negative (and potentially unbounded) effects to system performance.

Few-shot Knowledge Graph (KG) completion is a focus of current research, where each task aims at querying unseen facts of a relation given its few-shot reference entity pairs. Recent attempts solve this problem by learning static representations of entities and references, ignoring their dynamic properties, i.e., entities may exhibit diverse roles within task relations, and references may make different contributions to queries. This work proposes an adaptive attentional network for few-shot KG completion by learning adaptive entity and reference representations. Specifically, entities are modeled by an adaptive neighbor encoder to discern their task-oriented roles, while references are modeled by an adaptive query-aware aggregator to differentiate their contributions. Through the attention mechanism, both entities and references can capture their fine-grained semantic meanings, and thus render more expressive representations. This will be more predictive for knowledge acquisition in the few-shot scenario. Evaluation in link prediction on two public datasets shows that our approach achieves new state-of-the-art results with different few-shot sizes.

The problem of Multiple Object Tracking (MOT) consists in following the trajectory of different objects in a sequence, usually a video. In recent years, with the rise of Deep Learning, the algorithms that provide a solution to this problem have benefited from the representational power of deep models. This paper provides a comprehensive survey on works that employ Deep Learning models to solve the task of MOT on single-camera videos. Four main steps in MOT algorithms are identified, and an in-depth review of how Deep Learning was employed in each one of these stages is presented. A complete experimental comparison of the presented works on the three MOTChallenge datasets is also provided, identifying a number of similarities among the top-performing methods and presenting some possible future research directions.

Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis, thereby allowing manual manipulation in predicting the final answer.

北京阿比特科技有限公司