Vectors are universal mathematical objects that can represent text, images, speech, or a mix of these data modalities. That happens regardless of whether data is represented by hand-crafted features or learnt embeddings. Collect a large enough quantity of such vectors and the question of retrieval becomes urgently relevant: Finding vectors that are more similar to a query vector. This monograph is concerned with the question above and covers fundamental concepts along with advanced data structures and algorithms for vector retrieval. In doing so, it recaps this fascinating topic and lowers barriers of entry into this rich area of research.
Dense subgraph extraction is a fundamental problem in graph analysis and data mining, aimed at identifying cohesive and densely connected substructures within a given graph. It plays a crucial role in various domains, including social network analysis, biological network analysis, recommendation systems, and community detection. However, extracting a subgraph with the highest node similarity is a lack of exploration. To address this problem, we studied the Member Selection Problem and extended it with a dynamic constraint variant. By incorporating dynamic constraints, our algorithm can adapt to changing conditions or requirements, allowing for more flexible and personalized subgraph extraction. This approach enables the algorithm to provide tailored solutions that meet specific needs, even in scenarios where constraints may vary over time. We also provide the theoretical analysis to show that our algorithm is 1/3-approximation. Eventually, the experiments show that our algorithm is effective and efficient in tackling the member selection problem with dynamic constraints.
Estimating the statistics of the state of a dynamical system, from partial and noisy observations, is both mathematically challenging and finds wide application. Furthermore, the applications are of great societal importance, including problems such as probabilistic weather forecasting and prediction of epidemics. Particle filters provide a well-founded approach to the problem, leading to provably accurate approximations of the statistics. However these methods perform poorly in high dimensions. In 1994 the idea of ensemble Kalman filtering was introduced by Evensen, leading to a methodology that has been widely adopted in the geophysical sciences and also finds application to quite general inverse problems. However, ensemble Kalman filters have defied rigorous analysis of their statistical accuracy, except in the linear Gaussian setting. In this article we describe recent work which takes first steps to analyze the statistical accuracy of ensemble Kalman filters beyond the linear Gaussian setting. The subject is inherently technical, as it involves the evolution of probability measures according to a nonlinear and nonautonomous dynamical system; and the approximation of this evolution. It can nonetheless be presented in a fairly accessible fashion, understandable with basic knowledge of dynamical systems, numerical analysis and probability.
We investigate the vulnerability of computer-vision-based signal classifiers to adversarial perturbations of their inputs, where the signals and perturbations are subject to physical constraints. We consider a scenario in which a source and interferer emit signals that propagate as waves to a detector, which attempts to classify the source by analyzing the spectrogram of the signal it receives using a pre-trained neural network. By solving PDE-constrained optimization problems, we construct interfering signals that cause the detector to misclassify the source even though the perturbations to the spectrogram of the received signal are nearly imperceptible. Though such problems can have millions of decision variables, we introduce methods to solve them efficiently. Our experiments demonstrate that one can compute effective and physically realizable adversarial perturbations for a variety of machine learning models under various physical conditions.
Fractional derivatives are a well-studied generalization of integer order derivatives. Naturally, for optimization, it is of interest to understand the convergence properties of gradient descent using fractional derivatives. Convergence analysis of fractional gradient descent is currently limited both in the methods analyzed and the settings analyzed. This paper aims to fill in these gaps by analyzing variations of fractional gradient descent in smooth and convex, smooth and strongly convex, and smooth and non-convex settings. First, novel bounds will be established bridging fractional and integer derivatives. Then, these bounds will be applied to the aforementioned settings to prove linear convergence for smooth and strongly convex functions and $O(1/T)$ convergence for smooth and convex functions. Additionally, we prove $O(1/T)$ convergence for smooth and non-convex functions using an extended notion of smoothness - H\"older smoothness - that is more natural for fractional derivatives. Finally, empirical results will be presented on the potential speed up of fractional gradient descent over standard gradient descent as well as some preliminary theoretical results explaining this speed up.
We introduce a framework for benchmarking optimizers according to multiple criteria over various test functions. Based on a recently introduced union-free generic depth function for partial orders/rankings, it fully exploits the ordinal information and allows for incomparability. Our method describes the distribution of all partial orders/rankings, avoiding the notorious shortcomings of aggregation. This permits to identify test functions that produce central or outlying rankings of optimizers and to assess the quality of benchmarking suites.
Large Language Models (LLMs) have shown excellent generalization capabilities that have led to the development of numerous models. These models propose various new architectures, tweaking existing architectures with refined training strategies, increasing context length, using high-quality training data, and increasing training time to outperform baselines. Analyzing new developments is crucial for identifying changes that enhance training stability and improve generalization in LLMs. This survey paper comprehensively analyses the LLMs architectures and their categorization, training strategies, training datasets, and performance evaluations and discusses future research directions. Moreover, the paper also discusses the basic building blocks and concepts behind LLMs, followed by a complete overview of LLMs, including their important features and functions. Finally, the paper summarizes significant findings from LLM research and consolidates essential architectural and training strategies for developing advanced LLMs. Given the continuous advancements in LLMs, we intend to regularly update this paper by incorporating new sections and featuring the latest LLM models.
Transformer, an attention-based encoder-decoder architecture, has revolutionized the field of natural language processing. Inspired by this significant achievement, some pioneering works have recently been done on adapting Transformerliked architectures to Computer Vision (CV) fields, which have demonstrated their effectiveness on various CV tasks. Relying on competitive modeling capability, visual Transformers have achieved impressive performance on multiple benchmarks such as ImageNet, COCO, and ADE20k as compared with modern Convolution Neural Networks (CNN). In this paper, we have provided a comprehensive review of over one hundred different visual Transformers for three fundamental CV tasks (classification, detection, and segmentation), where a taxonomy is proposed to organize these methods according to their motivations, structures, and usage scenarios. Because of the differences in training settings and oriented tasks, we have also evaluated these methods on different configurations for easy and intuitive comparison instead of only various benchmarks. Furthermore, we have revealed a series of essential but unexploited aspects that may empower Transformer to stand out from numerous architectures, e.g., slack high-level semantic embeddings to bridge the gap between visual and sequential Transformers. Finally, three promising future research directions are suggested for further investment.
Transformers have achieved great success in many artificial intelligence fields, such as natural language processing, computer vision, and audio processing. Therefore, it is natural to attract lots of interest from academic and industry researchers. Up to the present, a great variety of Transformer variants (a.k.a. X-formers) have been proposed, however, a systematic and comprehensive literature review on these Transformer variants is still missing. In this survey, we provide a comprehensive review of various X-formers. We first briefly introduce the vanilla Transformer and then propose a new taxonomy of X-formers. Next, we introduce the various X-formers from three perspectives: architectural modification, pre-training, and applications. Finally, we outline some potential directions for future research.
Residual networks (ResNets) have displayed impressive results in pattern recognition and, recently, have garnered considerable theoretical interest due to a perceived link with neural ordinary differential equations (neural ODEs). This link relies on the convergence of network weights to a smooth function as the number of layers increases. We investigate the properties of weights trained by stochastic gradient descent and their scaling with network depth through detailed numerical experiments. We observe the existence of scaling regimes markedly different from those assumed in neural ODE literature. Depending on certain features of the network architecture, such as the smoothness of the activation function, one may obtain an alternative ODE limit, a stochastic differential equation or neither of these. These findings cast doubts on the validity of the neural ODE model as an adequate asymptotic description of deep ResNets and point to an alternative class of differential equations as a better description of the deep network limit.
We describe the new field of mathematical analysis of deep learning. This field emerged around a list of research questions that were not answered within the classical framework of learning theory. These questions concern: the outstanding generalization power of overparametrized neural networks, the role of depth in deep architectures, the apparent absence of the curse of dimensionality, the surprisingly successful optimization performance despite the non-convexity of the problem, understanding what features are learned, why deep architectures perform exceptionally well in physical problems, and which fine aspects of an architecture affect the behavior of a learning task in which way. We present an overview of modern approaches that yield partial answers to these questions. For selected approaches, we describe the main ideas in more detail.