Event-based sensors, distinguished by their high temporal resolution of 1 $\mathrm{\mu}\text{s}$ and a dynamic range of 120 $\text{dB}$, stand out as ideal tools for deployment in fast-paced settings like vehicles and drones. Traditional object detection techniques that utilize Artificial Neural Networks (ANNs) face challenges due to the sparse and asynchronous nature of the events these sensors capture. In contrast, Spiking Neural Networks (SNNs) offer a promising alternative, providing a temporal representation that is inherently aligned with event-based data. This paper explores the unique membrane potential dynamics of SNNs and their ability to modulate sparse events. We introduce an innovative spike-triggered adaptive threshold mechanism designed for stable training. Building on these insights, we present a specialized spiking feature pyramid network (SpikeFPN) optimized for automotive event-based object detection. Comprehensive evaluations demonstrate that SpikeFPN surpasses both traditional SNNs and advanced ANNs enhanced with attention mechanisms. Evidently, SpikeFPN achieves a mean Average Precision (mAP) of 0.477 on the GEN1 Automotive Detection (GAD) benchmark dataset, marking significant increases over the selected SNN baselines. Moreover, the efficient design of SpikeFPN ensures robust performance while optimizing computational resources, attributed to its innate sparse computation capabilities.
We propose a two-stage memory retrieval dynamics for modern Hopfield models, termed $\mathtt{U\text{-}Hop}$, with enhanced memory capacity. Our key contribution is a learnable feature map $\Phi$ which transforms the Hopfield energy function into kernel space. This transformation ensures convergence between the local minima of energy and the fixed points of retrieval dynamics within the kernel space. Consequently, the kernel norm induced by $\Phi$ serves as a novel similarity measure. It utilizes the stored memory patterns as learning data to enhance memory capacity across all modern Hopfield models. Specifically, we accomplish this by constructing a separation loss $\mathcal{L}_\Phi$ that separates the local minima of kernelized energy by separating stored memory patterns in kernel space. Methodologically, $\mathtt{U\text{-}Hop}$ memory retrieval process consists of: (Stage I) minimizing separation loss for a more uniform memory (local minimum) distribution, followed by (Stage II) standard Hopfield energy minimization for memory retrieval. This results in a significant reduction of possible metastable states in the Hopfield energy function, thus enhancing memory capacity by preventing memory confusion. Empirically, with real-world datasets, we demonstrate that $\mathtt{U\text{-}Hop}$ outperforms all existing modern Hopfield models and state-of-the-art similarity measures, achieving substantial improvements in both associative memory retrieval and deep learning tasks. Code is available at //github.com/MAGICS-LAB/UHop ; future updates are on arXiv:2404.03827
Kernel-based methods are heavily used in machine learning. However, they suffer from $O(N^2)$ complexity in the number $N$ of considered data points. In this paper, we propose an approximation procedure, which reduces this complexity to $O(N)$. Our approach is based on two ideas. First, we prove that any radial kernel with analytic basis function can be represented as sliced version of some one-dimensional kernel and derive an analytic formula for the one-dimensional counterpart. It turns out that the relation between one- and $d$-dimensional kernels is given by a generalized Riemann-Liouville fractional integral. Hence, we can reduce the $d$-dimensional kernel summation to a one-dimensional setting. Second, for solving these one-dimensional problems efficiently, we apply fast Fourier summations on non-equispaced data, a sorting algorithm or a combination of both. Due to its practical importance we pay special attention to the Gaussian kernel, where we show a dimension-independent error bound and represent its one-dimensional counterpart via a closed-form Fourier transform. We provide a run time comparison and error estimate of our fast kernel summations.
The first algorithm for the Linear Quadratic (LQ) control problem with an unknown system model, featuring a regret of $\mathcal{O}(\sqrt{T})$, was introduced by Abbasi-Yadkori and Szepesv\'ari (2011). Recognizing the computational complexity of this algorithm, subsequent efforts (see Cohen et al. (2019), Mania et al. (2019), Faradonbeh et al. (2020a), and Kargin et al.(2022)) have been dedicated to proposing algorithms that are computationally tractable while preserving this order of regret. Although successful, the existing works in the literature lack a fully adaptive exploration-exploitation trade-off adjustment and require a user-defined value, which can lead to overall regret bound growth with some factors. In this work, noticing this gap, we propose the first fully adaptive algorithm that controls the number of policy updates (i.e., tunes the exploration-exploitation trade-off) and optimizes the upper-bound of regret adaptively. Our proposed algorithm builds on the SDP-based approach of Cohen et al. (2019) and relaxes its need for a horizon-dependant warm-up phase by appropriately tuning the regularization parameter and adding an adaptive input perturbation. We further show that through careful exploration-exploitation trade-off adjustment there is no need to commit to the widely-used notion of strong sequential stability, which is restrictive and can introduce complexities in initialization.
An anticode ${\bf C} \subset {\bf F}_q^n$ with the diameter $\delta$ is a code in ${\bf F}_q^n$ such that the distance between any two distinct codewords in ${\bf C}$ is at most $\delta$. The famous Erd\"{o}s-Kleitman bound for a binary anticode ${\bf C}$ of the length $n$ and the diameter $\delta$ asserts that $$|{\bf C}| \leq \Sigma_{i=0}^{\frac{\delta}{2}} \displaystyle{n \choose i}.$$ In this paper, we give an antiGriesmer bound for $q$-ary projective linear anticodes, which is stronger than the above Erd\"{o}s-Kleitman bound for binary anticodes. The antiGriesmer bound is a lower bound on diameters of projective linear anticodes. From some known projective linear anticodes, we construct some linear codes with optimal or near optimal minimum distances. A complementary theorem constructing infinitely many new projective linear $(t+1)$-weight code from a known $t$-weight linear code is presented. Then many new optimal or almost optimal few-weight linear codes are given and their weight distributions are determined. As a by-product, we also construct several infinite families of three-weight binary linear codes, which lead to $l$-strongly regular graphs for each odd integer $l \geq 3$.
Graph alignment refers to the task of finding the vertex correspondence between two correlated graphs of $n$ vertices. Extensive study has been done on polynomial-time algorithms for the graph alignment problem under the Erd\H{o}s-R\'enyi graph pair model, where the two graphs are Erd\H{o}s-R\'enyi graphs with edge probability $q_\mathrm{u}$, correlated under certain vertex correspondence. To achieve exact recovery of the correspondence, all existing algorithms at least require the edge correlation coefficient $\rho_\mathrm{u}$ between the two graphs to be \emph{non-vanishing} as $n\rightarrow\infty$. Moreover, it is conjectured that no polynomial-time algorithm can achieve exact recovery under vanishing edge correlation $\rho_\mathrm{u}<1/\mathrm{polylog}(n)$. In this paper, we show that with a vanishing amount of additional \emph{attribute information}, exact recovery is polynomial-time feasible under \emph{vanishing} edge correlation $\rho_\mathrm{u} \ge n^{-\Theta(1)}$. We identify a \emph{local} tree structure, which incorporates one layer of user information and one layer of attribute information, and apply the subgraph counting technique to such structures. A polynomial-time algorithm is proposed that recovers the vertex correspondence for most of the vertices, and then refines the output to achieve exact recovery. The consideration of attribute information is motivated by real-world applications like LinkedIn and Twitter, where user attributes like birthplace and education background can aid alignment.
The expected regret of any reinforcement learning algorithm is lower bounded by $\Omega\left(\sqrt{DXAT}\right)$ for undiscounted returns, where $D$ is the diameter of the Markov decision process, $X$ the size of the state space, $A$ the size of the action space and $T$ the number of time steps. However, this lower bound is general. A smaller regret can be obtained by taking into account some specific knowledge of the problem structure. In this article, we consider an admission control problem to an $M/M/c/S$ queue with $m$ job classes and class-dependent rewards and holding costs. Queuing systems often have a diameter that is exponential in the buffer size $S$, making the previous lower bound prohibitive for any practical use. We propose an algorithm inspired by UCRL2, and use the structure of the problem to upper bound the expected total regret by $O(S\log T + \sqrt{mT \log T})$ in the finite server case. In the infinite server case, we prove that the dependence of the regret on $S$ disappears.
We give a stochastic optimization algorithm that solves a dense $n\times n$ real-valued linear system $Ax=b$, returning $\tilde x$ such that $\|A\tilde x-b\|\leq \epsilon\|b\|$ in time: $$\tilde O((n^2+nk^{\omega-1})\log1/\epsilon),$$ where $k$ is the number of singular values of $A$ larger than $O(1)$ times its smallest positive singular value, $\omega < 2.372$ is the matrix multiplication exponent, and $\tilde O$ hides a poly-logarithmic in $n$ factor. When $k=O(n^{1-\theta})$ (namely, $A$ has a flat-tailed spectrum, e.g., due to noisy data or regularization), this improves on both the cost of solving the system directly, as well as on the cost of preconditioning an iterative method such as conjugate gradient. In particular, our algorithm has an $\tilde O(n^2)$ runtime when $k=O(n^{0.729})$. We further adapt this result to sparse positive semidefinite matrices and least squares regression. Our main algorithm can be viewed as a randomized block coordinate descent method, where the key challenge is simultaneously ensuring good convergence and fast per-iteration time. In our analysis, we use theory of majorization for elementary symmetric polynomials to establish a sharp convergence guarantee when coordinate blocks are sampled using a determinantal point process. We then use a Markov chain coupling argument to show that similar convergence can be attained with a cheaper sampling scheme, and accelerate the block coordinate descent update via matrix sketching.
We study sample covariance matrices arising from multi-level components of variance. Thus, let $ B_n=\frac{1}{N}\sum_{j=1}^NT_{j}^{1/2}x_jx_j^TT_{j}^{1/2}$, where $x_j\in R^n$ are i.i.d. standard Gaussian, and $T_{j}=\sum_{r=1}^kl_{jr}^2\Sigma_{r}$ are $n\times n$ real symmetric matrices with bounded spectral norm, corresponding to $k$ levels of variation. As the matrix dimensions $n$ and $N$ increase proportionally, we show that the linear spectral statistics (LSS) of $B_n$ have Gaussian limits. The CLT is expressed as the convergence of a set of LSS to a standard multivariate Gaussian after centering by a mean vector $\Gamma_n$ and a covariance matrix $\Lambda_n$ which depend on $n$ and $N$ and may be evaluated numerically. Our work is motivated by the estimation of high-dimensional covariance matrices between phenotypic traits in quantitative genetics, particularly within nested linear random-effects models with up to $k$ levels of randomness. Our proof builds on the Bai-Silverstein \cite{baisilverstein2004} martingale method with some innovation to handle the multi-level setting.
A random $m\times n$ matrix $S$ is an oblivious subspace embedding (OSE) with parameters $\epsilon>0$, $\delta\in(0,1/3)$ and $d\leq m\leq n$, if for any $d$-dimensional subspace $W\subseteq R^n$, $P\big(\,\forall_{x\in W}\ (1+\epsilon)^{-1}\|x\|\leq\|Sx\|\leq (1+\epsilon)\|x\|\,\big)\geq 1-\delta.$ It is known that the embedding dimension of an OSE must satisfy $m\geq d$, and for any $\theta > 0$, a Gaussian embedding matrix with $m\geq (1+\theta) d$ is an OSE with $\epsilon = O_\theta(1)$. However, such optimal embedding dimension is not known for other embeddings. Of particular interest are sparse OSEs, having $s\ll m$ non-zeros per column, with applications to problems such as least squares regression and low-rank approximation. We show that, given any $\theta > 0$, an $m\times n$ random matrix $S$ with $m\geq (1+\theta)d$ consisting of randomly sparsified $\pm1/\sqrt s$ entries and having $s= O(\log^4(d))$ non-zeros per column, is an oblivious subspace embedding with $\epsilon = O_{\theta}(1)$. Our result addresses the main open question posed by Nelson and Nguyen (FOCS 2013), who conjectured that sparse OSEs can achieve $m=O(d)$ embedding dimension, and it improves on $m=O(d\log(d))$ shown by Cohen (SODA 2016). We use this to construct the first oblivious subspace embedding with $O(d)$ embedding dimension that can be applied faster than current matrix multiplication time, and to obtain an optimal single-pass algorithm for least squares regression. We further extend our results to Leverage Score Sparsification (LESS), which is a recently introduced non-oblivious embedding technique. We use LESS to construct the first subspace embedding with low distortion $\epsilon=o(1)$ and optimal embedding dimension $m=O(d/\epsilon^2)$ that can be applied in current matrix multiplication time.
In multi-turn dialog, utterances do not always take the full form of sentences \cite{Carbonell1983DiscoursePA}, which naturally makes understanding the dialog context more difficult. However, it is essential to fully grasp the dialog context to generate a reasonable response. Hence, in this paper, we propose to improve the response generation performance by examining the model's ability to answer a reading comprehension question, where the question is focused on the omitted information in the dialog. Enlightened by the multi-task learning scheme, we propose a joint framework that unifies these two tasks, sharing the same encoder to extract the common and task-invariant features with different decoders to learn task-specific features. To better fusing information from the question and the dialog history in the encoding part, we propose to augment the Transformer architecture with a memory updater, which is designed to selectively store and update the history dialog information so as to support downstream tasks. For the experiment, we employ human annotators to write and examine a large-scale dialog reading comprehension dataset. Extensive experiments are conducted on this dataset, and the results show that the proposed model brings substantial improvements over several strong baselines on both tasks. In this way, we demonstrate that reasoning can indeed help better response generation and vice versa. We release our large-scale dataset for further research.