亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Recently developed iterative and deep learning-based approaches to computer-generated holography (CGH) have been shown to achieve high-quality photorealistic 3D images with spatial light modulators. However, such approaches remain overly cumbersome for patterning sparse collections of target points across a photoresponsive volume in applications including biological microscopy and material processing. Specifically, in addition to requiring heavy computation that cannot accommodate real-time operation in mobile or hardware-light settings, existing sampling-dependent 3D CGH methods preclude the ability to place target points with arbitrary precision, limiting accessible depths to a handful of planes. Accordingly, we present a non-iterative point cloud holography algorithm that employs fast deterministic calculations in order to efficiently allocate patches of SLM pixels to different target points in the 3D volume and spread the patterning of all points across multiple time frames. Compared to a matched-performance implementation of the iterative Gerchberg-Saxton algorithm, our algorithm's relative computation speed advantage was found to increase with SLM pixel count, exceeding 100,000x at 512x512 array format.

相關內容

FAST:Conference on File and Storage Technologies。 Explanation:文件和存儲技術會議。 Publisher:USENIX。 SIT:

Graph algorithms play an important role in many computer science areas. In order to solve problems that can be modeled using graphs, it is necessary to use a data structure that can represent those graphs in an efficient manner. On top of this, an infrastructure should be build that will assist in implementing common algorithms or developing specialized ones. Here, a new Java library is introduced, called Graph4J, that uses a different approach when compared to existing, well-known Java libraries such as JGraphT, JUNG and Guava Graph. Instead of using object-oriented data structures for graph representation, a lower-level model based on arrays of primitive values is utilized, that drastically reduces the required memory and the running times of the algorithm implementations. The design of the library, the space complexity of the graph structures and the time complexity of the most common graph operations are presented in detail, along with an experimental study that evaluates its performance, when compared to the other libraries. Emphasis is given to infrastructure related aspects, that is graph creation, inspection, alteration and traversal. The improvements obtained for other implemented algorithms are also analyzed and it is shown that the proposed library significantly outperforms the existing ones.

The Maxima computer algebra system, the open-source successor to MACSYMA, the first general-purpose computer algebra system that was initially developed at the Massachusetts Institute of Technology in the late 1960s and later distributed by the United States Department of Energy, has some remarkable capabilities, some of which are implemented in the form of add-on, "share" packages that are distributed along with the core Maxima system. One such share package is itensor, for indicial tensor manipulation. One of the more remarkable features of itensor is functional differentiation. Through this, it is possible to use itensor to develop a Lagrangian field theory and derive the corresponding field equations. In the present note, we demonstrate this capability by deriving Maxwell's equations from the Maxwell Lagrangian, and exploring the properties of the system, including current conservation.

Quantization summarizes continuous distributions by calculating a discrete approximation. Among the widely adopted methods for data quantization is Lloyd's algorithm, which partitions the space into Vorono\"i cells, that can be seen as clusters, and constructs a discrete distribution based on their centroids and probabilistic masses. Lloyd's algorithm estimates the optimal centroids in a minimal expected distance sense, but this approach poses significant challenges in scenarios where data evaluation is costly, and relates to rare events. Then, the single cluster associated to no event takes the majority of the probability mass. In this context, a metamodel is required and adapted sampling methods are necessary to increase the precision of the computations on the rare clusters.

In the context of finite sums minimization, variance reduction techniques are widely used to improve the performance of state-of-the-art stochastic gradient methods. Their practical impact is clear, as well as their theoretical properties. Stochastic proximal point algorithms have been studied as an alternative to stochastic gradient algorithms since they are more stable with respect to the choice of the stepsize but a proper variance reduced version is missing. In this work, we propose the first study of variance reduction techniques for stochastic proximal point algorithms. We introduce a stochastic proximal version of SVRG, SAGA, and some of their variants for smooth and convex functions. We provide several convergence results for the iterates and the objective function values. In addition, under the Polyak-{\L}ojasiewicz (PL) condition, we obtain linear convergence rates for the iterates and the function values. Our numerical experiments demonstrate the advantages of the proximal variance reduction methods over their gradient counterparts, especially about the stability with respect to the choice of the step size.

A primary challenge of physics-informed machine learning (PIML) is its generalization beyond the training domain, especially when dealing with complex physical problems represented by partial differential equations (PDEs). This paper aims to enhance the generalization capabilities of PIML, facilitating practical, real-world applications where accurate predictions in unexplored regions are crucial. We leverage the inherent causality and temporal sequential characteristics of PDE solutions to fuse PIML models with recurrent neural architectures based on systems of ordinary differential equations, referred to as neural oscillators. Through effectively capturing long-time dependencies and mitigating the exploding and vanishing gradient problem, neural oscillators foster improved generalization in PIML tasks. Extensive experimentation involving time-dependent nonlinear PDEs and biharmonic beam equations demonstrates the efficacy of the proposed approach. Incorporating neural oscillators outperforms existing state-of-the-art methods on benchmark problems across various metrics. Consequently, the proposed method improves the generalization capabilities of PIML, providing accurate solutions for extrapolation and prediction beyond the training data.

Graphical models have exhibited their performance in numerous tasks ranging from biological analysis to recommender systems. However, graphical models with hub nodes are computationally difficult to fit, particularly when the dimension of the data is large. To efficiently estimate the hub graphical models, we introduce a two-phase algorithm. The proposed algorithm first generates a good initial point via a dual alternating direction method of multipliers (ADMM), and then warm starts a semismooth Newton (SSN) based augmented Lagrangian method (ALM) to compute a solution that is accurate enough for practical tasks. The sparsity structure of the generalized Jacobian ensures that the algorithm can obtain a nice solution very efficiently. Comprehensive experiments on both synthetic data and real data show that it obviously outperforms the existing state-of-the-art algorithms. In particular, in some high dimensional tasks, it can save more than 70\% of the execution time, meanwhile still achieves a high-quality estimation.

The goal of explainable Artificial Intelligence (XAI) is to generate human-interpretable explanations, but there are no computationally precise theories of how humans interpret AI generated explanations. The lack of theory means that validation of XAI must be done empirically, on a case-by-case basis, which prevents systematic theory-building in XAI. We propose a psychological theory of how humans draw conclusions from saliency maps, the most common form of XAI explanation, which for the first time allows for precise prediction of explainee inference conditioned on explanation. Our theory posits that absent explanation humans expect the AI to make similar decisions to themselves, and that they interpret an explanation by comparison to the explanations they themselves would give. Comparison is formalized via Shepard's universal law of generalization in a similarity space, a classic theory from cognitive science. A pre-registered user study on AI image classifications with saliency map explanations demonstrate that our theory quantitatively matches participants' predictions of the AI.

We derive information-theoretic generalization bounds for supervised learning algorithms based on the information contained in predictions rather than in the output of the training algorithm. These bounds improve over the existing information-theoretic bounds, are applicable to a wider range of algorithms, and solve two key challenges: (a) they give meaningful results for deterministic algorithms and (b) they are significantly easier to estimate. We show experimentally that the proposed bounds closely follow the generalization gap in practical scenarios for deep learning.

Hashing has been widely used in approximate nearest search for large-scale database retrieval for its computation and storage efficiency. Deep hashing, which devises convolutional neural network architecture to exploit and extract the semantic information or feature of images, has received increasing attention recently. In this survey, several deep supervised hashing methods for image retrieval are evaluated and I conclude three main different directions for deep supervised hashing methods. Several comments are made at the end. Moreover, to break through the bottleneck of the existing hashing methods, I propose a Shadow Recurrent Hashing(SRH) method as a try. Specifically, I devise a CNN architecture to extract the semantic features of images and design a loss function to encourage similar images projected close. To this end, I propose a concept: shadow of the CNN output. During optimization process, the CNN output and its shadow are guiding each other so as to achieve the optimal solution as much as possible. Several experiments on dataset CIFAR-10 show the satisfying performance of SRH.

Graph representation learning for hypergraphs can be used to extract patterns among higher-order interactions that are critically important in many real world problems. Current approaches designed for hypergraphs, however, are unable to handle different types of hypergraphs and are typically not generic for various learning tasks. Indeed, models that can predict variable-sized heterogeneous hyperedges have not been available. Here we develop a new self-attention based graph neural network called Hyper-SAGNN applicable to homogeneous and heterogeneous hypergraphs with variable hyperedge sizes. We perform extensive evaluations on multiple datasets, including four benchmark network datasets and two single-cell Hi-C datasets in genomics. We demonstrate that Hyper-SAGNN significantly outperforms the state-of-the-art methods on traditional tasks while also achieving great performance on a new task called outsider identification. Hyper-SAGNN will be useful for graph representation learning to uncover complex higher-order interactions in different applications.

北京阿比特科技有限公司