亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We study the properties of conformal prediction for network data under various sampling mechanisms that commonly arise in practice but often result in a non-representative sample of nodes. We interpret these sampling mechanisms as selection rules applied to a superpopulation and study the validity of conformal prediction conditional on an appropriate selection event. We show that the sampled subarray is exchangeable conditional on the selection event if the selection rule satisfies a permutation invariance property and a joint exchangeability condition holds for the superpopulation. Our result implies the finite-sample validity of conformal prediction for certain selection events related to ego networks and snowball sampling. We also show that when data are sampled via a random walk on a graph, a variant of weighted conformal prediction yields asymptotically valid prediction sets for an independently selected node from the population.

相關內容

With the integration of connected devices, artificial intelligence, and heterogeneous networks in IoT-driven cyber-physical systems, our society is evolving as a smart, automated, and connected community. In such dynamic and distributed environments, various operations are carried out considering different contextual factors to support the automation of collaborative devices and systems. These devices often perform long-lived operations or tasks (referred to as activities) to fulfill larger goals in the collaborative environment. These activities are usually mutable (change states) and interdependent. They can influence the execution of other activities in the ecosystem, requiring active and real-time monitoring of the entire connected environment. Recently, a vision for activity-centric access control(ACAC) was proposed to enable security modeling and enforcement from the perspective and abstraction of interdependent activities. The proposed ACAC incorporates four decision parameters: Authorizations(A), oBligations(B), Conditions(C), and activity Dependencies(D) for an object agnostic access control in smart systems. In this paper, we take a step further towards maturing ACAC by focusing on activity dependencies(D) and developing a family of formal mathematically grounded models, referred to as ACAC_D. These formal models consider the real-time mutability of activities in resolving active dependencies among various activities in the ecosystem. Activity dependencies can form a chain where it is possible to have dependencies of dependencies. In ACAC, we also consider the chain of dependencies while handling the mutability of an activity. We highlight the challenges while dealing with chain of dependencies, and provide solutions to resolve these challenges. We also present a proof of concept implementation of with performance analysis for a smart farming use case.

The turbulent jet ignition concept using prechambers is a promising solution to achieve stable combustion at lean conditions in large gas engines, leading to high efficiency at low emission levels. Due to the wide range of design and operating parameters for large gas engine prechambers, the preferred method for evaluating different designs is computational fluid dynamics (CFD), as testing in test bed measurement campaigns is time-consuming and expensive. However, the significant computational time required for detailed CFD simulations due to the complexity of solving the underlying physics also limits its applicability. In optimization settings similar to the present case, i.e., where the evaluation of the objective function(s) is computationally costly, Bayesian optimization has largely replaced classical design-of-experiment. Thus, the present study deals with the computationally efficient Bayesian optimization of large gas engine prechambers design using CFD simulation. Reynolds-averaged-Navier-Stokes simulations are used to determine the target values as a function of the selected prechamber design parameters. The results indicate that the chosen strategy is effective to find a prechamber design that achieves the desired target values.

Predictive variability due to data ambiguities has typically been addressed via construction of dedicated models with built-in probabilistic capabilities that are trained to predict uncertainty estimates as variables of interest. These approaches require distinct architectural components and training mechanisms, may include restrictive assumptions and exhibit overconfidence, i.e., high confidence in imprecise predictions. In this work, we propose a post-hoc sampling strategy for estimating predictive uncertainty accounting for data ambiguity. The method can generate different plausible outputs for a given input and does not assume parametric forms of predictive distributions. It is architecture agnostic and can be applied to any feed-forward deterministic network without changes to the architecture or training procedure. Experiments on regression tasks on imaging and non-imaging input data show the method's ability to generate diverse and multi-modal predictive distributions, and a desirable correlation of the estimated uncertainty with the prediction error.

This is part II of a two-part paper. Part I presented a universal Birkhoff theory for fast and accurate trajectory optimization. The theory rested on two main hypotheses. In this paper, it is shown that if the computational grid is selected from any one of the Legendre and Chebyshev family of node points, be it Lobatto, Radau or Gauss, then, the resulting collection of trajectory optimization methods satisfy the hypotheses required for the universal Birkhoff theory to hold. All of these grid points can be generated at an $\mathcal{O}(1)$ computational speed. Furthermore, all Birkhoff-generated solutions can be tested for optimality by a joint application of Pontryagin's- and Covector-Mapping Principles, where the latter was developed in Part~I. More importantly, the optimality checks can be performed without resorting to an indirect method or even explicitly producing the full differential-algebraic boundary value problem that results from an application of Pontryagin's Principle. Numerical problems are solved to illustrate all these ideas. The examples are chosen to particularly highlight three practically useful features of Birkhoff methods: (1) bang-bang optimal controls can be produced without suffering any Gibbs phenomenon, (2) discontinuous and even Dirac delta covector trajectories can be well approximated, and (3) extremal solutions over dense grids can be computed in a stable and efficient manner.

We approach two interconnected problems of quantum information processing in networks: Conference key agreement and entanglement distillation, both in the so-called source model where the given resource is a multipartite quantum state and the players interact over public classical channels to generate the desired correlation. The first problem is the distillation of a conference key when the source state is shared between a number of legal players and an eavesdropper; the eavesdropper, apart from starting off with this quantum side information, also observes the public communication between the players. The second is the distillation of Greenberger-Horne-Zeilinger (GHZ) states by means of local operations and classical communication (LOCC) from the given mixed state. These problem settings extend our previous paper [IEEE Trans. Inf. Theory 68(2):976-988, 2022], and we generalise its results: using a quantum version of the task of communication for omniscience, we derive novel lower bounds on the distillable conference key from any multipartite quantum state by means of non-interacting communication protocols. Secondly, we establish novel lower bounds on the yield of GHZ states from multipartite mixed states. Namely, we present two methods to produce bipartite entanglement between sufficiently many nodes so as to produce GHZ states. Next, we show that the conference key agreement protocol can be made coherent under certain conditions, enabling the direct generation of multipartite GHZ states.

Testing deep learning-based systems is crucial but challenging due to the required time and labor for labeling collected raw data. To alleviate the labeling effort, multiple test selection methods have been proposed where only a subset of test data needs to be labeled while satisfying testing requirements. However, we observe that such methods with reported promising results are only evaluated under simple scenarios, e.g., testing on original test data. This brings a question to us: are they always reliable? In this paper, we explore when and to what extent test selection methods fail for testing. Specifically, first, we identify potential pitfalls of 11 selection methods from top-tier venues based on their construction. Second, we conduct a study on five datasets with two model architectures per dataset to empirically confirm the existence of these pitfalls. Furthermore, we demonstrate how pitfalls can break the reliability of these methods. Concretely, methods for fault detection suffer from test data that are: 1) correctly classified but uncertain, or 2) misclassified but confident. Remarkably, the test relative coverage achieved by such methods drops by up to 86.85%. On the other hand, methods for performance estimation are sensitive to the choice of intermediate-layer output. The effectiveness of such methods can be even worse than random selection when using an inappropriate layer.

Recently, graph neural networks have been gaining a lot of attention to simulate dynamical systems due to their inductive nature leading to zero-shot generalizability. Similarly, physics-informed inductive biases in deep-learning frameworks have been shown to give superior performance in learning the dynamics of physical systems. There is a growing volume of literature that attempts to combine these two approaches. Here, we evaluate the performance of thirteen different graph neural networks, namely, Hamiltonian and Lagrangian graph neural networks, graph neural ODE, and their variants with explicit constraints and different architectures. We briefly explain the theoretical formulation highlighting the similarities and differences in the inductive biases and graph architecture of these systems. We evaluate these models on spring, pendulum, gravitational, and 3D deformable solid systems to compare the performance in terms of rollout error, conserved quantities such as energy and momentum, and generalizability to unseen system sizes. Our study demonstrates that GNNs with additional inductive biases, such as explicit constraints and decoupling of kinetic and potential energies, exhibit significantly enhanced performance. Further, all the physics-informed GNNs exhibit zero-shot generalizability to system sizes an order of magnitude larger than the training system, thus providing a promising route to simulate large-scale realistic systems.

The existence of representative datasets is a prerequisite of many successful artificial intelligence and machine learning models. However, the subsequent application of these models often involves scenarios that are inadequately represented in the data used for training. The reasons for this are manifold and range from time and cost constraints to ethical considerations. As a consequence, the reliable use of these models, especially in safety-critical applications, is a huge challenge. Leveraging additional, already existing sources of knowledge is key to overcome the limitations of purely data-driven approaches, and eventually to increase the generalization capability of these models. Furthermore, predictions that conform with knowledge are crucial for making trustworthy and safe decisions even in underrepresented scenarios. This work provides an overview of existing techniques and methods in the literature that combine data-based models with existing knowledge. The identified approaches are structured according to the categories integration, extraction and conformity. Special attention is given to applications in the field of autonomous driving.

As soon as abstract mathematical computations were adapted to computation on digital computers, the problem of efficient representation, manipulation, and communication of the numerical values in those computations arose. Strongly related to the problem of numerical representation is the problem of quantization: in what manner should a set of continuous real-valued numbers be distributed over a fixed discrete set of numbers to minimize the number of bits required and also to maximize the accuracy of the attendant computations? This perennial problem of quantization is particularly relevant whenever memory and/or computational resources are severely restricted, and it has come to the forefront in recent years due to the remarkable performance of Neural Network models in computer vision, natural language processing, and related areas. Moving from floating-point representations to low-precision fixed integer values represented in four bits or less holds the potential to reduce the memory footprint and latency by a factor of 16x; and, in fact, reductions of 4x to 8x are often realized in practice in these applications. Thus, it is not surprising that quantization has emerged recently as an important and very active sub-area of research in the efficient implementation of computations associated with Neural Networks. In this article, we survey approaches to the problem of quantizing the numerical values in deep Neural Network computations, covering the advantages/disadvantages of current methods. With this survey and its organization, we hope to have presented a useful snapshot of the current research in quantization for Neural Networks and to have given an intelligent organization to ease the evaluation of future research in this area.

Object detection typically assumes that training and test data are drawn from an identical distribution, which, however, does not always hold in practice. Such a distribution mismatch will lead to a significant performance drop. In this work, we aim to improve the cross-domain robustness of object detection. We tackle the domain shift on two levels: 1) the image-level shift, such as image style, illumination, etc, and 2) the instance-level shift, such as object appearance, size, etc. We build our approach based on the recent state-of-the-art Faster R-CNN model, and design two domain adaptation components, on image level and instance level, to reduce the domain discrepancy. The two domain adaptation components are based on H-divergence theory, and are implemented by learning a domain classifier in adversarial training manner. The domain classifiers on different levels are further reinforced with a consistency regularization to learn a domain-invariant region proposal network (RPN) in the Faster R-CNN model. We evaluate our newly proposed approach using multiple datasets including Cityscapes, KITTI, SIM10K, etc. The results demonstrate the effectiveness of our proposed approach for robust object detection in various domain shift scenarios.

北京阿比特科技有限公司