亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

A foundational theory of compositional categorical rewriting theory is presented, based on a collection of fibration-like properties that collectively induce and intrinsically structure the large collection of lemmata used in the proofs of theorems such as concurrency and associativity. The resulting highly generic proofs of these theorems are given. It is noteworthy that the proof of the concurrency theorem takes only a few lines and, while that of associativity remains somewhat longer, it would be unreadably long if written directly in terms of the basic lemmata. In essence, our framework improves the readability and ease of comprehension of these proofs by exposing latent modularity. A curated list of known instances of our framework is used to conclude the paper with a detailed discussion of the conditions under which the Double Pushout and Sesqui-Pushout semantics of graph transformation are compositional.

相關內容

一(yi)個旨在提升互聯網閱讀體驗的工(gong)具。

Graph representations are the generalization of geometric graph drawings from the plane to higher dimensions. A method introduced by Tutte to optimize properties of graph drawings is to minimize their energy. We explore this minimization for spherical graph representations, where the vertices lie on a unit sphere such that the origin is their barycentre. We present a primal and dual semidefinite program which can be used to find such a spherical graph representation minimizing the energy. We denote the optimal value of this program by $\rho(G)$ for a given graph $G$. The value turns out to be related to the second largest eigenvalue of the adjacency matrix of $G$, which we denote by $\lambda_2$. We show that for $G$ regular, $\rho(G) \leq \frac{\lambda_{2}}{2} \cdot v(G)$, and that equality holds if and only if the $\lambda_{2}$ eigenspace contains a spherical 1-design. Moreover, if $G$ is a random $d$-regular graph, $\rho(G)=\left(\sqrt{(d-1)} +o(1)\right)\cdot v(G)$, asymptotically almost surely.

We provide a method, based on automata theory, to mechanically prove the correctness of many numeration systems based on Fibonacci numbers. With it, long case-based and induction-based proofs of correctness can be replaced by simply constructing a regular expression (or finite automaton) specifying the rules for valid representations, followed by a short computation. Examples of the systems that can be handled using our technique include Brown's lazy representation (1965), the far-difference representation developed by Alpert (2009), and three representations proposed by Hajnal (2023). We also provide three additional systems and prove their validity.

Subsethood, which is to measure the degree of set inclusion relation, is predominant in fuzzy set theory. This paper introduces some basic concepts of spatial granules, coarse-fine relation, and operations like meet, join, quotient meet and quotient join. All the atomic granules can be hierarchized by set-inclusion relation and all the granules can be hierarchized by coarse-fine relation. Viewing an information system from the micro and the macro perspectives, we can get a micro knowledge space and a micro knowledge space, from which a rough set model and a spatial rough granule model are respectively obtained. The classical rough set model is the special case of the rough set model induced from the micro knowledge space, while the spatial rough granule model will be play a pivotal role in the problem-solving of structures. We discuss twelve axioms of monotone increasing subsethood and twelve corresponding axioms of monotone decreasing supsethood, and generalize subsethood and supsethood to conditional granularity and conditional fineness respectively. We develop five conditional granularity measures and five conditional fineness measures and prove that each conditional granularity or fineness measure satisfies its corresponding twelve axioms although its subsethood or supsethood measure only hold one of the two boundary conditions. We further define five conditional granularity entropies and five conditional fineness entropies respectively, and each entropy only satisfies part of the boundary conditions but all the ten monotone conditions.

We analyse the power of graph neural networks (GNNs) in terms of Boolean circuit complexity and descriptive complexity. We prove that the graph queries that can be computed by a polynomial-size bounded-depth family of GNNs are exactly those definable in the guarded fragment GFO+C of first-order logic with counting and with built-in relations. This puts GNNs in the circuit complexity class TC^0. Remarkably, the GNN families may use arbitrary real weights and a wide class of activation functions that includes the standard ReLU, logistic "sigmod", and hyperbolic tangent functions. If the GNNs are allowed to use random initialisation and global readout (both standard features of GNNs widely used in practice), they can compute exactly the same queries as bounded depth Boolean circuits with threshold gates, that is, exactly the queries in TC^0. Moreover, we show that queries computable by a single GNN with piecewise linear activations and rational weights are definable in GFO+C without built-in relations. Therefore, they are contained in uniform TC^0.

There have been recent advances in the analysis and visualization of 3D symmetric tensor fields, with a focus on the robust extraction of tensor field topology. However, topological features such as degenerate curves and neutral surfaces do not live in isolation. Instead, they intriguingly interact with each other. In this paper, we introduce the notion of {\em topological graph} for 3D symmetric tensor fields to facilitate global topological analysis of such fields. The nodes of the graph include degenerate curves and regions bounded by neutral surfaces in the domain. The edges in the graph denote the adjacency information between the regions and degenerate curves. In addition, we observe that a degenerate curve can be a loop and even a knot and that two degenerate curves (whether in the same region or not) can form a link. We provide a definition and theoretical analysis of individual degenerate curves in order to help understand why knots and links may occur. Moreover, we differentiate between wedges and trisectors, thus making the analysis more detailed about degenerate curves. We incorporate this information into the topological graph. Such a graph can not only reveal the global structure in a 3D symmetric tensor field but also allow two symmetric tensor fields to be compared. We demonstrate our approach by applying it to solid mechanics and material science data sets.

We consider the problem of inferring the underlying graph topology from smooth graph signals in a novel but practical scenario where data are located in distributed clients and are privacy-sensitive. The main difficulty of this task lies in how to utilize the potentially heterogeneous data of all isolated clients under privacy constraints. Towards this end, we propose a framework where personalized graphs for local clients as well as a consensus graph are jointly learned. The personalized graphs match local data distributions, thereby mitigating data heterogeneity, while the consensus graph captures the global information. We next devise a tailored algorithm to solve the induced problem without violating privacy constraints, i.e., all private data are processed locally. To further enhance privacy protection, we introduce differential privacy (DP) into the proposed algorithm to resist privacy attacks when transmitting model updates. Theoretically, we establish provable convergence analyses for the proposed algorithms, including that with DP. Finally, extensive experiments on both synthetic and real-world data are carried out to validate the proposed framework. Experimental results illustrate that our approach can learn graphs effectively in the target scenario.

Goldwasser et al. (2021) recently proposed the setting of PAC verification, where a hypothesis (machine learning model) that purportedly satisfies the agnostic PAC learning objective is verified using an interactive proof. In this paper we develop this notion further in a number of ways. First, we prove a lower bound of $\Omega\left(\sqrt{d}/\varepsilon^2\right)$ i.i.d.\ samples for PAC verification of hypothesis classes of VC dimension $d$. Second, we present a protocol for PAC verification of unions of intervals over $\mathbb{R}$ that improves upon their proposed protocol for that task, and matches our lower bound's dependence on $d$. Third, we introduce a natural generalization of their definition to verification of general statistical algorithms, which is applicable to a wider variety of settings beyond agnostic PAC learning. Showcasing our proposed definition, our final result is a protocol for the verification of statistical query algorithms that satisfy a combinatorial constraint on their queries.

Collective perception is a foundational problem in swarm robotics, in which the swarm must reach consensus on a coherent representation of the environment. An important variant of collective perception casts it as a best-of-$n$ decision-making process, in which the swarm must identify the most likely representation out of a set of alternatives. Past work on this variant primarily focused on characterizing how different algorithms navigate the speed-vs-accuracy tradeoff in a scenario where the swarm must decide on the most frequent environmental feature. Crucially, past work on best-of-$n$ decision-making assumes the robot sensors to be perfect (noise- and fault-less), limiting the real-world applicability of these algorithms. In this paper, we derive from first principles an optimal, probabilistic framework for minimalistic swarm robots equipped with flawed sensors. Then, we validate our approach in a scenario where the swarm collectively decides the frequency of a certain environmental feature. We study the speed and accuracy of the decision-making process with respect to several parameters of interest. Our approach can provide timely and accurate frequency estimates even in presence of severe sensory noise.

We describe the new field of mathematical analysis of deep learning. This field emerged around a list of research questions that were not answered within the classical framework of learning theory. These questions concern: the outstanding generalization power of overparametrized neural networks, the role of depth in deep architectures, the apparent absence of the curse of dimensionality, the surprisingly successful optimization performance despite the non-convexity of the problem, understanding what features are learned, why deep architectures perform exceptionally well in physical problems, and which fine aspects of an architecture affect the behavior of a learning task in which way. We present an overview of modern approaches that yield partial answers to these questions. For selected approaches, we describe the main ideas in more detail.

Embedding entities and relations into a continuous multi-dimensional vector space have become the dominant method for knowledge graph embedding in representation learning. However, most existing models ignore to represent hierarchical knowledge, such as the similarities and dissimilarities of entities in one domain. We proposed to learn a Domain Representations over existing knowledge graph embedding models, such that entities that have similar attributes are organized into the same domain. Such hierarchical knowledge of domains can give further evidence in link prediction. Experimental results show that domain embeddings give a significant improvement over the most recent state-of-art baseline knowledge graph embedding models.

北京阿比特科技有限公司